metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[3,5-di­fluoro-2-(2-pyrid­yl)phen­yl](picolinato)iridium(III)

aXi'an Modern Chemistry Research Institute, Xi'an 710065, People's Republic of China, and bDepartment of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China
*Correspondence e-mail: guangbochejl@yahoo.com

(Received 30 November 2008; accepted 3 December 2008; online 10 December 2008)

The Ir centre in the title complex, [Ir(C11H6F2N)2(C6H4NO2)], is six-coordinated in a slightly distorted octa­hedral IrC2N3O fashion.

Related literature

For background to organic light-emitting diodes (OLEDs), see: Cai et al. (2008[Cai, X. Y., Padmaperuma, A. B., Sapochak, L. S., Vecchi, P. A. & Burrows, P. E. (2008). Appl. Phys. Lett. 92, 083308-3.]); Chen et al. (2007[Chen, L. Q., Yang, C. L., Li, M., Qin, J. G., Gao, J., You, H. & Ma, D. G. (2007). Cryst. Growth Des. 7, 39-46.]); Park et al. (2006[Park, N. G., Choi, G. C., Lee, Y. H. & Kim, Y. S. (2006). Curr. Appl. Phys. 6, 620-626.]). For the synthesis, see: Lamansky et al. (2001[Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Lee, H., Adachi, C., Burrows, P. E., Forrest, S. R. & Thompson, M. E. (2001). J. Am. Chem. Soc. 123, 4304-4312.]);

[Scheme 1]

Experimental

Crystal data
  • [Ir(C11H6F2N)2(C6H4NO2)]

  • Mr = 694.64

  • Orthorhombic, P b c a

  • a = 16.469 (3) Å

  • b = 14.677 (3) Å

  • c = 19.612 (4) Å

  • V = 4740.3 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.70 mm−1

  • T = 292 (2) K

  • 0.30 × 0.26 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.203, Tmax = 0.284

  • 43036 measured reflections

  • 5410 independent reflections

  • 4239 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.066

  • S = 1.06

  • 5410 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 2.31 e Å−3

  • Δρmin = −1.47 e Å−3

Table 1
Selected geometric parameters (Å, °)

C11—Ir 1.997 (5)
C22—Ir 1.993 (4)
N1—Ir 2.041 (4)
N2—Ir 2.045 (4)
N3—Ir 2.138 (4)
Ir—O1 2.152 (3)
C22—Ir—C11 88.95 (18)
C11—Ir—N1 81.53 (19)
N1—Ir—N2 175.14 (16)
N1—Ir—N3 93.78 (16)
C11—Ir—O1 95.02 (16)
N2—Ir—O1 93.88 (14)

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent decades, the long-lived excited-state and highly efficient solid-state emissions of d6 and d8 metal complexes have made them of interest as potential components in organic light-emitting diodes (OLEDs) (Chen et al., 2007). Particularly, phosphorescent materials like Ir3+ complexes can significantly improve electroluminescent performance because both singlet and triplet excitons can be harvested for light emission, and usually are used as very promising phosphor dyes in OLEDs (Park et al., 2006). Recently, blue organic phosphor such as F2Irpic (F = 4,6-difluorophenylpyridinato-N,C-2' and pic = picolinate) (I) as a successful cyclometalated Ir3+ complex which has been typically doped into host matrices such as tetra-aryl silanes and short conjugation length carbazole derivatives in OLEDs, showing a good quantum efficiency (Cai et al., 2008). In this contribution, we synthesized and investigated crystal structure of F2Irpic.

As shown in Fig. 1, each Ir3+ cation is in a distorted octahedral coordination geometry, consisting of two chelating cyclometalated F ligands with cis-C—C and trans-N—N dispositions and one pic ligand. The Ir—O distance being 2.152 Å and Ir—C and Ir—N lengths are in the range of 1.993–1.997 Å and 2.041–2.138 Å, respectively.

Related literature top

For background to organic light-emitting diodes (OLEDs), see: Cai et al. (2008); Chen et al. (2007); Park et al. (2006). For the synthesis, see: Lamansky et al. (2001);

Experimental top

The title complex was obtained in two steps using a standard method (Lamansky et al., 2001) (71% yield based on Ir).

Refinement top

All H atoms on C atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)= 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound. Displacement ellipsoids are drawn at the 30% probability level (H atoms have been omitted).
[Figure 2] Fig. 2. Partial packing diagram of the title compound.
Bis[3,5-difluoro-2-(2-pyridyl)phenyl](picolinato)iridium(III) top
Crystal data top
[Ir(C11H6F2N)2(C6H4NO2)]F(000) = 2672
Mr = 694.64Dx = 1.947 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2859 reflections
a = 16.469 (3) Åθ = 3.0–27.5°
b = 14.677 (3) ŵ = 5.70 mm1
c = 19.612 (4) ÅT = 292 K
V = 4740.3 (16) Å3Block, yellow
Z = 80.30 × 0.26 × 0.22 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5410 independent reflections
Radiation source: fine-focus sealed tube4239 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scanh = 2021
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1919
Tmin = 0.203, Tmax = 0.284l = 2525
43036 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.014P)2 + 17.09P]
where P = (Fo2 + 2Fc2)/3
5410 reflections(Δ/σ)max = 0.002
343 parametersΔρmax = 2.31 e Å3
0 restraintsΔρmin = 1.47 e Å3
Crystal data top
[Ir(C11H6F2N)2(C6H4NO2)]V = 4740.3 (16) Å3
Mr = 694.64Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.469 (3) ŵ = 5.70 mm1
b = 14.677 (3) ÅT = 292 K
c = 19.612 (4) Å0.30 × 0.26 × 0.22 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5410 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4239 reflections with I > 2σ(I)
Tmin = 0.203, Tmax = 0.284Rint = 0.047
43036 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.014P)2 + 17.09P]
where P = (Fo2 + 2Fc2)/3
5410 reflectionsΔρmax = 2.31 e Å3
343 parametersΔρmin = 1.47 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6207 (4)0.1101 (4)0.6853 (3)0.0499 (13)
H10.56610.12210.67750.060*
C20.6411 (4)0.0328 (4)0.7211 (3)0.0669 (17)
H20.60130.00750.73590.080*
C30.7215 (5)0.0169 (4)0.7343 (3)0.0707 (19)
H30.73680.03430.75910.085*
C40.7802 (4)0.0765 (4)0.7107 (3)0.0622 (16)
H40.83480.06600.72000.075*
C50.7565 (3)0.1537 (4)0.6724 (2)0.0480 (13)
C60.8089 (3)0.2221 (4)0.6425 (3)0.0473 (13)
C70.8932 (4)0.2253 (5)0.6464 (3)0.0657 (18)
C80.9387 (3)0.2931 (5)0.6192 (3)0.0658 (18)
H80.99490.29380.62410.079*
C90.8993 (4)0.3605 (5)0.5842 (3)0.071 (2)
C100.8160 (3)0.3619 (4)0.5770 (3)0.0542 (15)
H100.79110.40920.55340.065*
C110.7702 (3)0.2939 (3)0.6046 (2)0.0419 (11)
C120.6176 (3)0.4753 (4)0.5608 (3)0.0509 (13)
H120.61670.48680.60740.061*
C130.6061 (4)0.5465 (4)0.5168 (3)0.0661 (17)
H130.59780.60530.53300.079*
C140.6071 (4)0.5284 (4)0.4480 (3)0.0688 (18)
H140.59940.57550.41690.083*
C150.6194 (4)0.4416 (4)0.4248 (3)0.0558 (15)
H150.61960.42970.37820.067*
C160.6316 (3)0.3711 (3)0.4712 (2)0.0385 (11)
C170.6479 (3)0.2753 (3)0.4558 (2)0.0383 (10)
C180.6517 (3)0.2361 (4)0.3914 (3)0.0472 (12)
C190.6645 (3)0.1461 (4)0.3795 (3)0.0518 (14)
H190.66690.12220.33560.062*
C200.6738 (3)0.0926 (4)0.4362 (3)0.0541 (14)
C210.6723 (3)0.1253 (4)0.5017 (3)0.0515 (14)
H210.68040.08590.53820.062*
C220.6587 (3)0.2175 (3)0.5135 (2)0.0357 (9)
C230.4938 (3)0.3110 (3)0.6744 (2)0.0386 (11)
C240.4141 (3)0.3031 (4)0.6958 (3)0.0525 (14)
H240.39640.33330.73480.063*
C250.3613 (4)0.2499 (4)0.6585 (3)0.0628 (17)
H250.30790.24220.67280.075*
C260.3882 (4)0.2091 (5)0.6007 (4)0.0697 (18)
H260.35280.17440.57440.084*
C270.4686 (3)0.2192 (4)0.5809 (3)0.0556 (14)
H270.48640.19130.54100.067*
C280.5564 (3)0.3678 (3)0.7132 (2)0.0430 (12)
N10.6763 (3)0.1695 (3)0.6610 (2)0.0417 (10)
N20.6303 (2)0.3893 (3)0.53947 (19)0.0365 (9)
N30.5214 (2)0.2683 (3)0.6182 (2)0.0391 (9)
F10.9340 (2)0.1567 (3)0.6813 (2)0.0938 (13)
F20.9423 (2)0.4287 (3)0.5565 (2)0.1009 (15)
F30.6422 (2)0.2901 (3)0.33525 (15)0.0727 (10)
F40.6870 (3)0.0019 (2)0.4263 (2)0.0847 (12)
Ir0.649485 (11)0.281026 (12)0.603051 (9)0.03453 (6)
O10.6297 (2)0.3595 (2)0.69428 (16)0.0409 (8)
O20.5319 (2)0.4165 (3)0.7596 (2)0.0652 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.059 (3)0.041 (3)0.050 (3)0.002 (2)0.001 (3)0.007 (3)
C20.091 (5)0.046 (3)0.064 (4)0.003 (3)0.003 (4)0.016 (3)
C30.094 (5)0.056 (4)0.061 (4)0.026 (4)0.010 (4)0.010 (3)
C40.067 (4)0.060 (4)0.059 (4)0.021 (3)0.011 (3)0.004 (3)
C50.056 (3)0.051 (3)0.036 (3)0.011 (3)0.005 (2)0.012 (2)
C60.033 (2)0.060 (3)0.049 (3)0.008 (2)0.003 (2)0.024 (3)
C70.050 (3)0.089 (5)0.057 (4)0.010 (4)0.004 (3)0.019 (4)
C80.032 (3)0.098 (5)0.068 (4)0.003 (3)0.000 (3)0.023 (4)
C90.050 (4)0.093 (5)0.070 (4)0.031 (4)0.022 (3)0.023 (4)
C100.042 (3)0.069 (4)0.052 (3)0.005 (3)0.002 (3)0.017 (3)
C110.044 (3)0.045 (3)0.037 (2)0.001 (2)0.001 (2)0.012 (2)
C120.067 (4)0.034 (3)0.052 (3)0.001 (3)0.009 (3)0.003 (2)
C130.090 (5)0.038 (3)0.070 (4)0.001 (3)0.009 (4)0.001 (3)
C140.091 (5)0.047 (4)0.068 (4)0.004 (3)0.011 (4)0.017 (3)
C150.070 (4)0.055 (4)0.043 (3)0.002 (3)0.001 (3)0.012 (3)
C160.035 (3)0.043 (3)0.038 (2)0.001 (2)0.000 (2)0.004 (2)
C170.032 (2)0.045 (3)0.038 (2)0.001 (2)0.001 (2)0.003 (2)
C180.037 (2)0.064 (4)0.040 (3)0.001 (3)0.003 (2)0.001 (3)
C190.042 (3)0.073 (4)0.041 (3)0.007 (3)0.003 (2)0.024 (3)
C200.057 (3)0.047 (3)0.058 (4)0.009 (3)0.006 (3)0.019 (3)
C210.063 (4)0.038 (3)0.054 (3)0.009 (2)0.004 (3)0.003 (2)
C220.035 (2)0.036 (2)0.036 (2)0.001 (2)0.001 (2)0.005 (2)
C230.045 (3)0.035 (3)0.036 (3)0.002 (2)0.001 (2)0.010 (2)
C240.046 (3)0.062 (4)0.050 (3)0.005 (3)0.003 (3)0.011 (3)
C250.047 (3)0.074 (4)0.068 (4)0.011 (3)0.001 (3)0.018 (3)
C260.053 (3)0.077 (5)0.079 (5)0.021 (3)0.012 (3)0.002 (4)
C270.060 (3)0.054 (3)0.052 (3)0.008 (3)0.010 (3)0.005 (3)
C280.054 (3)0.038 (3)0.037 (3)0.002 (2)0.007 (2)0.003 (2)
N10.046 (2)0.040 (2)0.039 (2)0.0068 (19)0.0049 (19)0.0004 (19)
N20.040 (2)0.032 (2)0.038 (2)0.0019 (16)0.0039 (17)0.0008 (17)
N30.038 (2)0.039 (2)0.040 (2)0.0031 (17)0.0062 (17)0.0059 (18)
F10.054 (2)0.119 (4)0.108 (3)0.028 (2)0.021 (2)0.010 (3)
F20.072 (3)0.116 (4)0.116 (3)0.041 (3)0.026 (3)0.009 (3)
F30.094 (3)0.089 (3)0.0345 (16)0.010 (2)0.0010 (17)0.0034 (17)
F40.118 (3)0.051 (2)0.086 (3)0.023 (2)0.012 (2)0.028 (2)
Ir0.04007 (10)0.03117 (9)0.03235 (9)0.00048 (8)0.00413 (8)0.00017 (8)
O10.044 (2)0.0416 (19)0.0376 (17)0.0021 (15)0.0060 (15)0.0040 (15)
O20.061 (3)0.078 (3)0.057 (2)0.009 (2)0.002 (2)0.023 (2)
Geometric parameters (Å, º) top
C1—N11.351 (6)C16—N21.366 (6)
C1—C21.375 (7)C16—C171.463 (7)
C1—H10.9300C17—C181.388 (7)
C2—C31.370 (9)C17—C221.426 (7)
C2—H20.9300C18—C191.359 (8)
C3—C41.383 (9)C18—F31.366 (6)
C3—H30.9300C19—C201.370 (8)
C4—C51.415 (8)C19—H190.9300
C4—H40.9300C20—F41.363 (6)
C5—N11.359 (7)C20—C211.371 (7)
C5—C61.448 (8)C21—C221.391 (7)
C6—C71.391 (7)C21—H210.9300
C6—C111.439 (7)C22—Ir1.993 (4)
C7—C81.355 (9)C23—N31.346 (6)
C7—F11.391 (8)C23—C241.383 (7)
C8—C91.368 (10)C23—C281.528 (7)
C8—H80.9300C24—C251.379 (8)
C9—F21.341 (7)C24—H240.9300
C9—C101.380 (8)C25—C261.356 (9)
C10—C111.362 (7)C25—H250.9300
C10—H100.9300C26—C271.388 (8)
C11—Ir1.997 (5)C26—H260.9300
C12—N21.345 (6)C27—N31.347 (6)
C12—C131.368 (8)C27—H270.9300
C12—H120.9300C28—O21.226 (6)
C13—C141.377 (9)C28—O11.269 (6)
C13—H130.9300N1—Ir2.041 (4)
C14—C151.367 (8)N2—Ir2.045 (4)
C14—H140.9300N3—Ir2.138 (4)
C15—C161.392 (7)Ir—O12.152 (3)
C15—H150.9300
N1—C1—C2123.2 (6)C18—C19—H19122.1
N1—C1—H1118.4C20—C19—H19122.1
C2—C1—H1118.4F4—C20—C19117.5 (5)
C3—C2—C1118.2 (6)F4—C20—C21118.6 (5)
C3—C2—H2120.9C19—C20—C21123.9 (5)
C1—C2—H2120.9C20—C21—C22120.0 (5)
C2—C3—C4120.3 (6)C20—C21—H21120.0
C2—C3—H3119.9C22—C21—H21120.0
C4—C3—H3119.9C21—C22—C17117.8 (4)
C3—C4—C5119.4 (6)C21—C22—Ir127.9 (4)
C3—C4—H4120.3C17—C22—Ir114.3 (3)
C5—C4—H4120.3N3—C23—C24122.0 (5)
N1—C5—C4119.5 (6)N3—C23—C28115.7 (4)
N1—C5—C6113.3 (5)C24—C23—C28122.3 (5)
C4—C5—C6127.3 (5)C25—C24—C23119.0 (6)
C7—C6—C11116.5 (6)C25—C24—H24120.5
C7—C6—C5126.6 (6)C23—C24—H24120.5
C11—C6—C5116.9 (4)C26—C25—C24119.2 (6)
C8—C7—F1117.3 (6)C26—C25—H25120.4
C8—C7—C6123.7 (7)C24—C25—H25120.4
F1—C7—C6119.0 (7)C25—C26—C27119.9 (6)
C7—C8—C9117.8 (6)C25—C26—H26120.1
C7—C8—H8121.1C27—C26—H26120.1
C9—C8—H8121.1N3—C27—C26121.4 (6)
F2—C9—C8119.5 (6)N3—C27—H27119.3
F2—C9—C10118.2 (7)C26—C27—H27119.3
C8—C9—C10122.3 (6)O2—C28—O1125.8 (5)
C11—C10—C9120.0 (6)O2—C28—C23117.8 (5)
C11—C10—H10120.0O1—C28—C23116.4 (4)
C9—C10—H10120.0C1—N1—C5119.3 (5)
C10—C11—C6119.7 (5)C1—N1—Ir124.6 (4)
C10—C11—Ir127.9 (4)C5—N1—Ir116.0 (4)
C6—C11—Ir112.3 (4)C12—N2—C16119.4 (4)
N2—C12—C13122.9 (5)C12—N2—Ir124.3 (3)
N2—C12—H12118.6C16—N2—Ir116.3 (3)
C13—C12—H12118.6C23—N3—C27118.5 (4)
C12—C13—C14118.0 (6)C23—N3—Ir114.0 (3)
C12—C13—H13121.0C27—N3—Ir127.4 (4)
C14—C13—H13121.0C22—Ir—C1188.95 (18)
C15—C14—C13120.5 (6)C22—Ir—N195.68 (18)
C15—C14—H14119.8C11—Ir—N181.53 (19)
C13—C14—H14119.8C22—Ir—N280.69 (18)
C14—C15—C16119.8 (6)C11—Ir—N295.13 (18)
C14—C15—H15120.1N1—Ir—N2175.14 (16)
C16—C15—H15120.1C22—Ir—N399.04 (17)
N2—C16—C15119.5 (5)C11—Ir—N3171.13 (17)
N2—C16—C17113.1 (4)N1—Ir—N393.78 (16)
C15—C16—C17127.3 (5)N2—Ir—N389.99 (15)
C18—C17—C22118.1 (4)C22—Ir—O1173.55 (16)
C18—C17—C16126.4 (5)C11—Ir—O195.02 (16)
C22—C17—C16115.5 (4)N1—Ir—O189.94 (14)
C19—C18—F3116.3 (5)N2—Ir—O193.88 (14)
C19—C18—C17124.5 (5)N3—Ir—O177.38 (14)
F3—C18—C17119.2 (5)C28—O1—Ir116.0 (3)
C18—C19—C20115.8 (5)

Experimental details

Crystal data
Chemical formula[Ir(C11H6F2N)2(C6H4NO2)]
Mr694.64
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)292
a, b, c (Å)16.469 (3), 14.677 (3), 19.612 (4)
V3)4740.3 (16)
Z8
Radiation typeMo Kα
µ (mm1)5.70
Crystal size (mm)0.30 × 0.26 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.203, 0.284
No. of measured, independent and
observed [I > 2σ(I)] reflections
43036, 5410, 4239
Rint0.047
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.066, 1.06
No. of reflections5410
No. of parameters343
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.014P)2 + 17.09P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.31, 1.47

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
C11—Ir1.997 (5)N2—Ir2.045 (4)
C22—Ir1.993 (4)N3—Ir2.138 (4)
N1—Ir2.041 (4)Ir—O12.152 (3)
C22—Ir—C1188.95 (18)N1—Ir—N393.78 (16)
C11—Ir—N181.53 (19)C11—Ir—O195.02 (16)
N1—Ir—N2175.14 (16)N2—Ir—O193.88 (14)
 

Acknowledgements

The authors thank the Key Programs Foundation for Science and Technology Development of Shanxi Province and the Foundation of Jilin Normal University.

References

First citationCai, X. Y., Padmaperuma, A. B., Sapochak, L. S., Vecchi, P. A. & Burrows, P. E. (2008). Appl. Phys. Lett. 92, 083308–3.  Web of Science CrossRef Google Scholar
First citationChen, L. Q., Yang, C. L., Li, M., Qin, J. G., Gao, J., You, H. & Ma, D. G. (2007). Cryst. Growth Des. 7, 39–46.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Lee, H., Adachi, C., Burrows, P. E., Forrest, S. R. & Thompson, M. E. (2001). J. Am. Chem. Soc. 123, 4304–4312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPark, N. G., Choi, G. C., Lee, Y. H. & Kim, Y. S. (2006). Curr. Appl. Phys. 6, 620–626.  Web of Science CrossRef Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds