organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzyl-N-methyl­morpholinium chloride

aFaculty of Chemistry and Materials Science, Langfang Teachers' College, Hebei, Langfang 065000, People's Republic of China
*Correspondence e-mail: biany@126.com

(Received 30 November 2008; accepted 2 December 2008; online 6 December 2008)

In the title compound, C12H18NO+·Cl, the cations and anions are inter­connected by weak C—H⋯Cl hydrogen bonds. The morpholine ring system adopts a chair conformation.

Related literature

For general background to ionic liquids, see: Abedin et al. (2004[Abedin, S. Z. E., Borissenko, N. & Endres, F. (2004). Electrochem. Commun. 6, 510-514.], 2005[Abedin, S. Z. E., Farag, H. K., Moustafa, E. M., Welz-Biermann, U. & Endres, F. (2005). Phys. Chem. Chem. Phys. 7, 2333-2339.]); Kim et al. (2005[Kim, K. S., Park, S. Y., Yeon, S. H. & Lee, H. (2005). Electrochim. Acta, 50, 5673-5678.], 2006[Kim, K. S., Choi, S., Cha, J. H., Yeon, S. H. & Lee, H. (2006). J. Mater. Chem. 16, 1315-1317.]).

[Scheme 1]

Experimental

Crystal data
  • C12H18NO+·Cl

  • Mr = 227.72

  • Orthorhombic, P b c a

  • a = 9.8693 (8) Å

  • b = 9.5732 (8) Å

  • c = 24.989 (2) Å

  • V = 2361.0 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 113 (2) K

  • 0.22 × 0.20 × 0.16 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.937, Tmax = 0.954

  • 23984 measured reflections

  • 2806 independent reflections

  • 2658 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.103

  • S = 1.14

  • 2806 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯Cl1i 0.99 2.70 3.6610 (14) 163
C5—H5A⋯Cl1ii 0.99 2.74 3.6304 (14) 150
C5—H5B⋯Cl1 0.99 2.63 3.5373 (14) 152
C9—H9⋯Cl1iii 0.95 2.80 3.5599 (16) 138
C12—H12A⋯Cl1ii 0.98 2.70 3.6085 (14) 155
C12—H12B⋯Cl1 0.98 2.78 3.6566 (14) 149
C12—H12C⋯Cl1iv 0.98 2.68 3.6380 (14) 166
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quaternary morpholine halides are valuable precursors for the preparation of ionic liquids (ILs) by ion metathesis (Kim et al., 2005). The excellent conductivity, broad electrochemical window, thermal stability, and low volatility of ILs have made them promising media for electrochemical processes (Abedin et al., 2004; Abedin et al., 2005). In particular, ILs based on the morpholinium cation are favored because of their low cost, easy synthesis, and electrochemical stability (Kim et al., 2006). We report here a new example structure of this class.

The molecular structure of the title compound is illustrated in Fig. 1. The morpholine unit adopts a chair conformation. The bond distances and angles in the cation are normal within experimental error.

The crystal packing is illustrated in Fig. 2. The Cl-anion is involved in weak C—H···Cl hydrogen bonds. Each cation forms a network of weak C—H···Cl hydrogen bonds to surrounding chloride ions.

Related literature top

For general background on ionic liquids, see: Abedin et al. (2004, 2005); Kim et al. (2005, 2006).

Experimental top

Under vigorous stirring, benzyl chloride (0.12 mol) was added to a solution of 4-methylmorpholine (0.1 mol) in 20 ml of acetonitrile. The mixture was stirred at 60 °C for 5 h. The solvent was removed under reduced pressure. The remaining brownish, viscous liquid crystallized slowly at room temperature in ethanol and acetone [1/20(v/v)].

Refinement top

H atoms were included in the refinement in the riding and rotation model approximation, with C–H = 0.96–0.97 Å and Uiso (H) = 1.2 Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compund, showing the atom-numbering scheme. Dispacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of the title compound, showing hydrogen-bond interactions as dashed lines.
N-Benzyl-N-methylmorpholinium chloride top
Crystal data top
C12H18NO+·ClDx = 1.281 Mg m3
Mr = 227.72Mo Kα radiation, λ = 0.71070 Å
Orthorhombic, PbcaCell parameters from 5341 reflections
a = 9.8693 (8) Åθ = 1.6–27.9°
b = 9.5732 (8) ŵ = 0.30 mm1
c = 24.989 (2) ÅT = 113 K
V = 2361.0 (4) Å3Prism, colorless
Z = 80.22 × 0.20 × 0.16 mm
F(000) = 976
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2806 independent reflections
Radiation source: rotating anode2658 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.045
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 1.6°
ω and ϕ scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1212
Tmin = 0.937, Tmax = 0.954l = 3232
23984 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.8783P]
where P = (Fo2 + 2Fc2)/3
2806 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C12H18NO+·ClV = 2361.0 (4) Å3
Mr = 227.72Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.8693 (8) ŵ = 0.30 mm1
b = 9.5732 (8) ÅT = 113 K
c = 24.989 (2) Å0.22 × 0.20 × 0.16 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2806 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2658 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.954Rint = 0.045
23984 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.14Δρmax = 0.26 e Å3
2806 reflectionsΔρmin = 0.37 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.06425 (3)0.24262 (3)0.579326 (12)0.01816 (12)
O10.67612 (10)0.15043 (10)0.57658 (4)0.0243 (2)
N10.44588 (10)0.33344 (11)0.59493 (4)0.0150 (2)
C10.59109 (13)0.37790 (14)0.60368 (5)0.0188 (3)
H1A0.61580.36220.64160.023*
H1B0.59970.47910.59620.023*
C20.68808 (14)0.29772 (15)0.56803 (6)0.0215 (3)
H2A0.66830.31930.53010.026*
H2B0.78220.32750.57570.026*
C30.54189 (14)0.10657 (14)0.56303 (6)0.0224 (3)
H3A0.53490.00390.56680.027*
H3B0.52280.13070.52520.027*
C40.43833 (13)0.17620 (14)0.59888 (5)0.0178 (3)
H4A0.34640.14480.58860.021*
H4B0.45430.14750.63640.021*
C50.35303 (13)0.40397 (14)0.63597 (5)0.0183 (3)
H5A0.37100.50570.63520.022*
H5B0.25800.38990.62450.022*
C60.36606 (13)0.35467 (14)0.69294 (5)0.0181 (3)
C70.28094 (14)0.24900 (14)0.71151 (6)0.0210 (3)
H70.21930.20530.68760.025*
C80.28540 (15)0.20693 (17)0.76477 (6)0.0278 (3)
H80.22720.13460.77700.033*
C90.37464 (16)0.27038 (17)0.79996 (6)0.0295 (3)
H90.37840.24110.83630.035*
C100.45814 (16)0.37636 (18)0.78209 (6)0.0301 (4)
H100.51880.42030.80630.036*
C110.45410 (14)0.41926 (16)0.72890 (6)0.0240 (3)
H110.51150.49270.71710.029*
C120.39548 (14)0.38154 (14)0.54104 (5)0.0193 (3)
H12A0.39810.48380.53940.029*
H12B0.30210.34940.53580.029*
H12C0.45340.34270.51290.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01759 (19)0.01818 (19)0.01873 (18)0.00039 (11)0.00043 (10)0.00056 (11)
O10.0205 (5)0.0204 (5)0.0320 (5)0.0046 (4)0.0022 (4)0.0013 (4)
N10.0162 (5)0.0133 (5)0.0156 (5)0.0002 (4)0.0003 (4)0.0007 (4)
C10.0169 (6)0.0186 (6)0.0209 (6)0.0027 (5)0.0002 (5)0.0015 (5)
C20.0178 (6)0.0211 (7)0.0257 (7)0.0011 (5)0.0023 (5)0.0020 (5)
C30.0251 (7)0.0154 (6)0.0267 (7)0.0002 (5)0.0023 (5)0.0025 (5)
C40.0212 (6)0.0114 (6)0.0209 (6)0.0020 (5)0.0020 (5)0.0019 (5)
C50.0191 (6)0.0173 (6)0.0183 (6)0.0031 (5)0.0018 (5)0.0001 (5)
C60.0175 (6)0.0193 (6)0.0175 (6)0.0045 (5)0.0005 (5)0.0013 (5)
C70.0194 (6)0.0250 (7)0.0187 (6)0.0002 (5)0.0004 (5)0.0006 (5)
C80.0292 (7)0.0310 (8)0.0233 (7)0.0037 (6)0.0055 (6)0.0055 (6)
C90.0317 (8)0.0398 (9)0.0171 (6)0.0156 (7)0.0001 (6)0.0008 (6)
C100.0285 (7)0.0394 (9)0.0226 (7)0.0094 (6)0.0078 (6)0.0121 (6)
C110.0226 (7)0.0236 (7)0.0257 (7)0.0008 (5)0.0008 (5)0.0075 (6)
C120.0212 (6)0.0202 (6)0.0166 (6)0.0002 (5)0.0008 (5)0.0027 (5)
Geometric parameters (Å, º) top
O1—C31.4304 (17)C5—H5A0.9900
O1—C21.4310 (17)C5—H5B0.9900
N1—C121.5075 (16)C6—C71.3943 (19)
N1—C41.5104 (18)C6—C111.3946 (19)
N1—C11.5109 (16)C7—C81.3914 (19)
N1—C51.5321 (16)C7—H70.9500
C1—C21.5164 (19)C8—C91.385 (2)
C1—H1A0.9900C8—H80.9500
C1—H1B0.9900C9—C101.381 (2)
C2—H2A0.9900C9—H90.9500
C2—H2B0.9900C10—C111.392 (2)
C3—C41.5138 (18)C10—H100.9500
C3—H3A0.9900C11—H110.9500
C3—H3B0.9900C12—H12A0.9800
C4—H4A0.9900C12—H12B0.9800
C4—H4B0.9900C12—H12C0.9800
C5—C61.5056 (17)
C3—O1—C2109.28 (10)C6—C5—N1116.35 (10)
C12—N1—C4110.28 (10)C6—C5—H5A108.2
C12—N1—C1110.87 (10)N1—C5—H5A108.2
C4—N1—C1108.54 (10)C6—C5—H5B108.2
C12—N1—C5105.42 (9)N1—C5—H5B108.2
C4—N1—C5111.47 (9)H5A—C5—H5B107.4
C1—N1—C5110.26 (10)C7—C6—C11118.87 (12)
N1—C1—C2111.78 (11)C7—C6—C5119.38 (12)
N1—C1—H1A109.3C11—C6—C5121.57 (12)
C2—C1—H1A109.3C8—C7—C6120.61 (13)
N1—C1—H1B109.3C8—C7—H7119.7
C2—C1—H1B109.3C6—C7—H7119.7
H1A—C1—H1B107.9C9—C8—C7120.04 (14)
O1—C2—C1111.04 (11)C9—C8—H8120.0
O1—C2—H2A109.4C7—C8—H8120.0
C1—C2—H2A109.4C10—C9—C8119.76 (14)
O1—C2—H2B109.4C10—C9—H9120.1
C1—C2—H2B109.4C8—C9—H9120.1
H2A—C2—H2B108.0C9—C10—C11120.56 (14)
O1—C3—C4110.85 (11)C9—C10—H10119.7
O1—C3—H3A109.5C11—C10—H10119.7
C4—C3—H3A109.5C10—C11—C6120.15 (14)
O1—C3—H3B109.5C10—C11—H11119.9
C4—C3—H3B109.5C6—C11—H11119.9
H3A—C3—H3B108.1N1—C12—H12A109.5
N1—C4—C3111.52 (10)N1—C12—H12B109.5
N1—C4—H4A109.3H12A—C12—H12B109.5
C3—C4—H4A109.3N1—C12—H12C109.5
N1—C4—H4B109.3H12A—C12—H12C109.5
C3—C4—H4B109.3H12B—C12—H12C109.5
H4A—C4—H4B108.0
C12—N1—C1—C270.18 (14)C1—N1—C5—C670.30 (14)
C4—N1—C1—C251.09 (13)N1—C5—C6—C793.35 (14)
C5—N1—C1—C2173.45 (10)N1—C5—C6—C1191.63 (15)
C3—O1—C2—C161.86 (14)C11—C6—C7—C81.1 (2)
N1—C1—C2—O157.37 (14)C5—C6—C7—C8176.30 (12)
C2—O1—C3—C462.50 (14)C6—C7—C8—C90.2 (2)
C12—N1—C4—C370.00 (13)C7—C8—C9—C100.6 (2)
C1—N1—C4—C351.64 (13)C8—C9—C10—C110.5 (2)
C5—N1—C4—C3173.26 (11)C9—C10—C11—C60.5 (2)
O1—C3—C4—N158.57 (14)C7—C6—C11—C101.3 (2)
C12—N1—C5—C6169.98 (11)C5—C6—C11—C10176.32 (12)
C4—N1—C5—C650.32 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cl1i0.992.703.6610 (14)163
C5—H5A···Cl1ii0.992.743.6304 (14)150
C5—H5B···Cl10.992.633.5373 (14)152
C9—H9···Cl1iii0.952.803.5599 (16)138
C12—H12A···Cl1ii0.982.703.6085 (14)155
C12—H12B···Cl10.982.783.6566 (14)149
C12—H12C···Cl1iv0.982.683.6380 (14)166
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y, z+3/2; (iv) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC12H18NO+·Cl
Mr227.72
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)113
a, b, c (Å)9.8693 (8), 9.5732 (8), 24.989 (2)
V3)2361.0 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.22 × 0.20 × 0.16
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.937, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
23984, 2806, 2658
Rint0.045
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.14
No. of reflections2806
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.37

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cl1i0.992.703.6610 (14)162.7
C5—H5A···Cl1ii0.992.743.6304 (14)150.1
C5—H5B···Cl10.992.633.5373 (14)152.4
C9—H9···Cl1iii0.952.803.5599 (16)138.1
C12—H12A···Cl1ii0.982.703.6085 (14)155.0
C12—H12B···Cl10.982.783.6566 (14)148.9
C12—H12C···Cl1iv0.982.683.6380 (14)166.4
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y, z+3/2; (iv) x+1/2, y+1/2, z+1.
 

References

First citationAbedin, S. Z. E., Borissenko, N. & Endres, F. (2004). Electrochem. Commun. 6, 510–514.  Web of Science CrossRef Google Scholar
First citationAbedin, S. Z. E., Farag, H. K., Moustafa, E. M., Welz-Biermann, U. & Endres, F. (2005). Phys. Chem. Chem. Phys. 7, 2333–2339.  Web of Science PubMed Google Scholar
First citationKim, K. S., Choi, S., Cha, J. H., Yeon, S. H. & Lee, H. (2006). J. Mater. Chem. 16, 1315–1317.  Web of Science CrossRef CAS Google Scholar
First citationKim, K. S., Park, S. Y., Yeon, S. H. & Lee, H. (2005). Electrochim. Acta, 50, 5673–5678.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds