organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o34-o35

3-(2-Hy­droxy­ethyl)-2-(p-tolyl­amino)­quinazolin-4(3H)-one

aDepartment of Chemistry and Life Science, Xianning College, Xianning 4371000, Hubei, People's Republic of China, and bDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, Hubei, People's Republic of China
*Correspondence e-mail: xhyang8875301@yahoo.com.cn

(Received 30 November 2008; accepted 1 December 2008; online 6 December 2008)

In the title compound, C17H17N3O2, the quinazolinone ring system is essentially planar. The benzene ring is twisted with respect to it by a dihedral angle of 32.7 (5)°. The mol­ecular conformation is stabilized by an N—H⋯O hydrogen bond, and the crystal structure is stabilized by inter­molecular O—H⋯N inter­actions.

Related literature

For the biological properties of quinazolinone derivatives, see: Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & Cler, E. D. (1999). Pharm. Acta Helv. 74, 11-17.]); Shiba et al. (1997[Shiba, S. A., El-Khamry, A. A., Shaban, M. & Atia, K. S. (1997). Pharmazie, 52, 189-194.]), Malamas & Millen (1991[Malamas, M. S. & Millen, J. (1991). J. Med. Chem. 34, 1492-1503.]); Mannschreck et al. (1984[Mannschreck, A., Koller, H., Stuhler, G., Davis, M. A. & Traber, J. (1984). Eur. J. Med. Chem. 19, 381-383.]); Kung et al. (1999[Kung, P. P., Casper, M. D., Cook, K. L., Wilson-Lingardo, L., Risen, L. M., Vickers, T. A., Ranken, R., Blyn, L. B., Wyatt, J. R., Cook, P. & Decker, D. J. (1999). J. Med. Chem. 42, 4705-4713.]); Bartroli et al. (1998[Bartroli, J., Turmo, E., Alguero, M., Boncompte, E., Vericat, M. L., Conte, L., Ramis, J., Merlos, M. & Garcia-Rafanell, J. F. (1998). J. Med. Chem. 41, 1869-1882.]); Palmer et al. (1997[Palmer, B. D., Trumpp-Kallmeyer, S., Fry, D. W., Nelson, J. M., Showalter, H. D. H. & Denny, W. A. (1997). J. Med. Chem. 40, 1519-1529.]); Tsou et al. (2001[Tsou, H. R., Mamuya, N., Johnson, B. D., Reich, M. F., Gruber, B. C., Ye, F., Nilakantan, R., Shen, R., Discafani, C., DeBlanc, R., Davis, R., Koehn, F. E., Greenberger, L. M., Wang, Y. F. & Wissner, A. (2001). J. Med. Chem. 44, 2719-2734.]); Matsuno et al. (2002[Matsuno, K. et al. (2002). J. Med. Chem. 45, 3057-3066.]). For the synthesis, see: Yang et al. (2008[Yang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem. 45, 1365-1369.]). For related structures, see: Hu et al. (2006[Hu, Y.-G., Zheng, A.-H. & Li, G.-H. (2006). Acta Cryst. E62, o1457-o1459.]); Qu et al. (2008[Qu, Y.-N., Pan, L.-R. & Hu, Y.-G. (2008). Acta Cryst. E64, o137.]); Zeng et al. (2008[Zeng, G., Li, Q. & Hu, Y. (2008). Acta Cryst. E64, o535.]); Sun et al. (2008[Sun, Y., Zeng, G.-P. & Hu, Y.-G. (2008). Acta Cryst. E64, o311-o312.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17N3O2

  • Mr = 295.34

  • Monoclinic, P 21 /n

  • a = 7.8589 (2) Å

  • b = 19.1706 (5) Å

  • c = 10.6696 (3) Å

  • β = 111.082 (3)°

  • V = 1499.89 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.10 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.993

  • 15404 measured reflections

  • 2938 independent reflections

  • 2074 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.138

  • S = 1.07

  • 2938 reflections

  • 206 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1D⋯N3i 0.88 (15) 2.09 (15) 2.882 (12) 149 (13)
N1—H1⋯O1 0.87 (7) 1.98 (8) 2.806 (12) 160 (12)
Symmetry code: (i) -x+2, -y+2, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The synthesis of derivatives of quinazolinone has been the focus of great interest. This is due, in part, to the broad spectrum of biological properties of these compounds. Some of these activities include antimicrobial (Pandeya et al., 1999; Shiba et al., 1997), antidiabetic (Malamas & Millen, 1991), anticonvulsant (Mannschreck et al., 1984), antibacterial (Kung et al., 1999), antifungal (Bartroli et al., 1998), protein tyrosine kinase inhibitors (Palmer et al., 1997), EGFR inhibitors (Tsou et al., 2001) and PDGFR phosphorylation inhibitors (Matsuno et al., 2002). We have recently focused on the synthesis of heterocyclic compounds using an aza-Wittig reaction. The compound (Fig. 1), may be used as a new precursor for obtaining bioactive molecules. The bond lengths and angles are unexceptional. The quinazolinone ring system is almost planar, with a maximum deviation of 0.037Å for N2; the phenyl ring is twisted with respect to it, with a dihedral angle of 32.7 (5)°. Intramolecular N—H···O and intermolecular O—H···N hydrogen bonds (Fig. 2 and Table 2) stabilize the molecular conformation and the crystal structure.

Related literature top

For the biological properties of quinazolinone derivatives, see: Pandeya et al. (1999); Shiba et al. (1997), Malamas et al. (1991); Mannschreck et al. (1984); Kung et al. (1999); Bartroli et al. (1998); Palmer et al. (1997); Tsou et al. (2001); Matsuno et al. (2002). For the synthesis, see: Yang et al. (2008); Hu et al. (2006); Qu et al. (2008); Zeng et al. (2008); Sun et al. (2008).

Experimental top

To a solution of 1-(4-methyl-phenyl)- 3-(2-ethoxycarbonylphenyl) carbodiimide (3 mmol) in THF (15 ml) was added 2-aminoethanol (3 mmol). After the reaction mixture was allowed to stand for 1 h, the solvent was removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 4 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound. The product was recrystallized from methanol-dichloromethane (1:1 v/v, 20 ml) at room temperature to give crystals suitable for X-ray diffraction.

Refinement top

All H atoms were located in difference maps. Those bonded to C were treated as riding atoms with C—H = 0.93 Å, Uiso=1.2Ueq (C) for Csp2, C—H = 0.97 Å, Uiso = 1.2Ueq (C) for CH2. The coordinates of the H atoms bonded to N and O were refined with a distance restraint of O—H = 0.88 (2)Å and Uiso = 1.2Ueq (O, N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing the hydrogen bonds as dashed lines.
3-(2-Hydroxyethyl)-2-(p-tolylamino)quinazolin-4(3H)-one top
Crystal data top
C17H17N3O2F(000) = 624
Mr = 295.34Dx = 1.308 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2754 reflections
a = 7.8589 (2) Åθ = 2.3–23.8°
b = 19.1706 (5) ŵ = 0.09 mm1
c = 10.6696 (3) ÅT = 298 K
β = 111.082 (3)°Block, colorless
V = 1499.89 (8) Å30.10 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2938 independent reflections
Radiation source: fine-focus sealed tube2074 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 99
Tmin = 0.981, Tmax = 0.993k = 2323
15404 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.081P)2 + 0.012P]
where P = (Fo2 + 2Fc2)/3
2938 reflections(Δ/σ)max < 0.001
206 parametersΔρmax = 0.23 e Å3
2 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H17N3O2V = 1499.89 (8) Å3
Mr = 295.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8589 (2) ŵ = 0.09 mm1
b = 19.1706 (5) ÅT = 298 K
c = 10.6696 (3) Å0.10 × 0.10 × 0.08 mm
β = 111.082 (3)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2938 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2074 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.993Rint = 0.037
15404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.23 e Å3
2938 reflectionsΔρmin = 0.17 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.713 (2)0.6964 (7)0.4651 (16)0.077 (5)
H1A0.59170.68100.45120.116*
H1B0.79750.67380.54320.116*
H1C0.74340.68460.38810.116*
C20.7255 (16)0.7741 (6)0.4853 (13)0.053 (3)
C30.6939 (17)0.8197 (6)0.3785 (13)0.056 (3)
H30.66020.80190.29180.068*
C40.7113 (16)0.8908 (6)0.3978 (11)0.050 (3)
H40.68920.92020.32430.060*
C50.7611 (14)0.9190 (5)0.5253 (11)0.042 (3)
C60.7883 (15)0.8745 (6)0.6330 (12)0.048 (3)
H60.81850.89240.71930.058*
C70.7703 (16)0.8033 (6)0.6116 (13)0.053 (3)
H70.78910.77400.68480.063*
C80.8785 (14)1.0302 (5)0.6438 (11)0.041 (3)
C90.9600 (16)1.1474 (6)0.7315 (11)0.047 (3)
C101.0902 (15)1.1136 (6)0.8487 (11)0.044 (3)
C111.1021 (15)1.0410 (6)0.8529 (11)0.044 (3)
C121.2277 (17)1.0094 (7)0.9662 (12)0.059 (3)
H121.23650.96100.97110.070*
C131.3379 (19)1.0490 (8)1.0699 (13)0.066 (4)
H131.42131.02721.14480.080*
C141.3277 (19)1.1213 (7)1.0656 (12)0.064 (4)
H141.40401.14781.13660.077*
C151.2045 (18)1.1529 (7)0.9560 (12)0.057 (3)
H151.19651.20130.95280.068*
C160.7068 (16)1.1345 (6)0.5175 (11)0.049 (3)
H16A0.67341.17870.54630.058*
H16B0.59991.10470.49120.058*
C170.7589 (16)1.1470 (6)0.3967 (11)0.051 (3)
H17A0.67861.18170.33900.061*
H17B0.88281.16450.42530.061*
N10.7697 (13)0.9925 (5)0.5361 (9)0.048 (3)
H10.737 (16)1.015 (6)0.461 (9)0.057*
N20.8506 (12)1.1022 (4)0.6320 (9)0.042 (2)
N30.9966 (12)0.9998 (5)0.7464 (9)0.046 (2)
O10.7451 (12)1.0832 (4)0.3238 (8)0.055 (2)
H1D0.84 (2)1.074 (7)0.306 (15)0.083*
O20.9394 (12)1.2106 (4)0.7163 (9)0.064 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.090 (11)0.048 (8)0.099 (12)0.014 (7)0.040 (10)0.019 (7)
C20.049 (7)0.045 (7)0.068 (8)0.010 (5)0.025 (6)0.011 (6)
C30.064 (8)0.056 (7)0.054 (8)0.018 (6)0.028 (7)0.018 (6)
C40.052 (7)0.051 (7)0.046 (7)0.011 (5)0.018 (6)0.003 (5)
C50.037 (6)0.040 (6)0.046 (6)0.009 (4)0.013 (5)0.003 (5)
C60.051 (7)0.047 (7)0.046 (6)0.010 (5)0.016 (6)0.006 (5)
C70.052 (8)0.045 (7)0.059 (8)0.008 (5)0.018 (6)0.004 (5)
C80.041 (6)0.037 (6)0.044 (6)0.003 (5)0.015 (5)0.004 (5)
C90.056 (7)0.038 (6)0.051 (7)0.001 (5)0.025 (6)0.008 (5)
C100.049 (7)0.041 (6)0.043 (6)0.004 (5)0.020 (5)0.007 (5)
C110.045 (7)0.045 (6)0.040 (6)0.003 (5)0.013 (5)0.006 (5)
C120.066 (8)0.052 (7)0.047 (7)0.001 (6)0.007 (6)0.000 (5)
C130.065 (9)0.075 (9)0.045 (7)0.002 (7)0.002 (7)0.005 (6)
C140.070 (9)0.070 (9)0.044 (7)0.016 (7)0.010 (7)0.015 (6)
C150.069 (9)0.049 (7)0.052 (7)0.011 (6)0.022 (7)0.014 (6)
C160.043 (7)0.044 (6)0.055 (7)0.009 (5)0.013 (6)0.001 (5)
C170.052 (7)0.043 (6)0.047 (7)0.005 (5)0.007 (6)0.003 (5)
N10.052 (6)0.040 (5)0.041 (5)0.005 (4)0.006 (5)0.000 (4)
N20.043 (5)0.037 (5)0.044 (5)0.003 (4)0.014 (4)0.001 (4)
N30.050 (6)0.037 (5)0.043 (5)0.001 (4)0.007 (5)0.003 (4)
O10.060 (6)0.053 (5)0.049 (5)0.005 (4)0.015 (4)0.003 (4)
O20.083 (7)0.035 (5)0.069 (6)0.005 (4)0.020 (5)0.006 (4)
Geometric parameters (Å, º) top
C1—C21.505 (17)C10—C111.394 (15)
C1—H1A0.9600C10—C151.394 (15)
C1—H1B0.9600C11—N31.388 (14)
C1—H1C0.9600C11—C121.395 (16)
C2—C71.382 (17)C12—C131.365 (17)
C2—C31.385 (18)C12—H120.9300
C3—C41.380 (16)C13—C141.387 (19)
C3—H30.9300C13—H130.9300
C4—C51.383 (15)C14—C151.363 (18)
C4—H40.9300C14—H140.9300
C5—C61.384 (15)C15—H150.9300
C5—N11.414 (13)C16—N21.470 (14)
C6—C71.383 (15)C16—C171.506 (16)
C6—H60.9300C16—H16A0.9700
C7—H70.9300C16—H16B0.9700
C8—N31.292 (14)C17—O11.432 (13)
C8—N11.366 (14)C17—H17A0.9700
C8—N21.395 (13)C17—H17B0.9700
C9—O21.225 (13)N1—H10.87 (7)
C9—N21.401 (14)O1—H1D0.88 (15)
C9—C101.452 (16)
C2—C1—H1A109.5N3—C11—C12119.3 (10)
C2—C1—H1B109.5C10—C11—C12118.7 (10)
H1A—C1—H1B109.5C13—C12—C11120.4 (12)
C2—C1—H1C109.5C13—C12—H12119.8
H1A—C1—H1C109.5C11—C12—H12119.8
H1B—C1—H1C109.5C12—C13—C14121.1 (12)
C7—C2—C3117.0 (11)C12—C13—H13119.5
C7—C2—C1121.4 (12)C14—C13—H13119.5
C3—C2—C1121.5 (12)C15—C14—C13119.2 (11)
C4—C3—C2121.4 (11)C15—C14—H14120.4
C4—C3—H3119.3C13—C14—H14120.4
C2—C3—H3119.3C14—C15—C10120.8 (12)
C3—C4—C5120.7 (11)C14—C15—H15119.6
C3—C4—H4119.6C10—C15—H15119.6
C5—C4—H4119.6N2—C16—C17114.5 (9)
C4—C5—C6118.7 (10)N2—C16—H16A108.6
C4—C5—N1117.2 (10)C17—C16—H16A108.6
C6—C5—N1123.9 (10)N2—C16—H16B108.6
C7—C6—C5119.6 (11)C17—C16—H16B108.6
C7—C6—H6120.2H16A—C16—H16B107.6
C5—C6—H6120.2O1—C17—C16109.8 (9)
C2—C7—C6122.4 (11)O1—C17—H17A109.7
C2—C7—H7118.8C16—C17—H17A109.7
C6—C7—H7118.8O1—C17—H17B109.7
N3—C8—N1121.1 (10)C16—C17—H17B109.7
N3—C8—N2124.4 (9)H17A—C17—H17B108.2
N1—C8—N2114.6 (9)C8—N1—C5126.3 (9)
O2—C9—N2119.7 (11)C8—N1—H1113 (9)
O2—C9—C10125.0 (10)C5—N1—H1116 (8)
N2—C9—C10115.3 (10)C8—N2—C9120.6 (9)
C11—C10—C15119.8 (11)C8—N2—C16122.7 (9)
C11—C10—C9119.4 (9)C9—N2—C16116.6 (9)
C15—C10—C9120.8 (11)C8—N3—C11118.2 (9)
N3—C11—C10121.9 (10)C17—O1—H1D113 (10)
C7—C2—C3—C41.7 (18)C13—C14—C15—C100 (2)
C1—C2—C3—C4177.7 (11)C11—C10—C15—C140.2 (18)
C2—C3—C4—C50.0 (18)C9—C10—C15—C14179.5 (11)
C3—C4—C5—C61.8 (17)N2—C16—C17—O179.0 (12)
C3—C4—C5—N1177.9 (10)N3—C8—N1—C54.7 (17)
C4—C5—C6—C71.8 (16)N2—C8—N1—C5175.6 (9)
N1—C5—C6—C7177.6 (10)C4—C5—N1—C8152.1 (11)
C3—C2—C7—C61.7 (18)C6—C5—N1—C832.0 (17)
C1—C2—C7—C6177.7 (11)N3—C8—N2—C93.5 (15)
C5—C6—C7—C20.1 (17)N1—C8—N2—C9176.3 (9)
O2—C9—C10—C11179.1 (10)N3—C8—N2—C16175.9 (10)
N2—C9—C10—C112.0 (14)N1—C8—N2—C164.3 (14)
O2—C9—C10—C150.2 (17)O2—C9—N2—C8176.4 (10)
N2—C9—C10—C15178.7 (10)C10—C9—N2—C84.6 (14)
C15—C10—C11—N3177.3 (10)O2—C9—N2—C164.1 (15)
C9—C10—C11—N32.0 (15)C10—C9—N2—C16174.9 (9)
C15—C10—C11—C120.8 (16)C17—C16—N2—C884.7 (12)
C9—C10—C11—C12179.9 (10)C17—C16—N2—C995.9 (11)
N3—C11—C12—C13177.4 (12)N1—C8—N3—C11179.6 (9)
C10—C11—C12—C130.7 (18)N2—C8—N3—C110.7 (16)
C11—C12—C13—C140 (2)C10—C11—N3—C83.4 (16)
C12—C13—C14—C150 (2)C12—C11—N3—C8178.5 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1D···N3i0.88 (15)2.09 (15)2.882 (12)149 (13)
N1—H1···O10.87 (7)1.98 (8)2.806 (12)160 (12)
Symmetry code: (i) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC17H17N3O2
Mr295.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.8589 (2), 19.1706 (5), 10.6696 (3)
β (°) 111.082 (3)
V3)1499.89 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.10 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART 4K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.981, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
15404, 2938, 2074
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.138, 1.07
No. of reflections2938
No. of parameters206
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.17

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1D···N3i0.88 (15)2.09 (15)2.882 (12)149 (13)
N1—H1···O10.87 (7)1.98 (8)2.806 (12)160 (12)
Symmetry code: (i) x+2, y+2, z+1.
 

Acknowledgements

The authors are grateful to Xianning College for financial support of this work and for providing laboratory and analytical facilities. The authors also acknowledge Dr Xiang-Gao Meng, Central China Normal University Whuhan, for the data collection.

References

First citationBartroli, J., Turmo, E., Alguero, M., Boncompte, E., Vericat, M. L., Conte, L., Ramis, J., Merlos, M. & Garcia-Rafanell, J. F. (1998). J. Med. Chem. 41, 1869–1882.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, Y.-G., Zheng, A.-H. & Li, G.-H. (2006). Acta Cryst. E62, o1457–o1459.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKung, P. P., Casper, M. D., Cook, K. L., Wilson-Lingardo, L., Risen, L. M., Vickers, T. A., Ranken, R., Blyn, L. B., Wyatt, J. R., Cook, P. & Decker, D. J. (1999). J. Med. Chem. 42, 4705–4713.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMalamas, M. S. & Millen, J. (1991). J. Med. Chem. 34, 1492–1503.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMannschreck, A., Koller, H., Stuhler, G., Davis, M. A. & Traber, J. (1984). Eur. J. Med. Chem. 19, 381–383.  CAS Google Scholar
First citationMatsuno, K. et al. (2002). J. Med. Chem. 45, 3057–3066.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalmer, B. D., Trumpp-Kallmeyer, S., Fry, D. W., Nelson, J. M., Showalter, H. D. H. & Denny, W. A. (1997). J. Med. Chem. 40, 1519–1529.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & Cler, E. D. (1999). Pharm. Acta Helv. 74, 11–17.  CrossRef PubMed CAS Google Scholar
First citationQu, Y.-N., Pan, L.-R. & Hu, Y.-G. (2008). Acta Cryst. E64, o137.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiba, S. A., El-Khamry, A. A., Shaban, M. & Atia, K. S. (1997). Pharmazie, 52, 189–194.  CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y., Zeng, G.-P. & Hu, Y.-G. (2008). Acta Cryst. E64, o311–o312.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTsou, H. R., Mamuya, N., Johnson, B. D., Reich, M. F., Gruber, B. C., Ye, F., Nilakantan, R., Shen, R., Discafani, C., DeBlanc, R., Davis, R., Koehn, F. E., Greenberger, L. M., Wang, Y. F. & Wissner, A. (2001). J. Med. Chem. 44, 2719–2734.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem. 45, 1365–1369.  CSD CrossRef CAS Google Scholar
First citationZeng, G., Li, Q. & Hu, Y. (2008). Acta Cryst. E64, o535.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o34-o35
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds