organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Trispyrazol-1-ylmethane

aLudwig-Maximilians Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13 (Haus D), 81377 München, Germany
*Correspondence e-mail: kluef@cup.uni-muenchen.de

(Received 5 December 2008; accepted 9 December 2008; online 13 December 2008)

In the title compound, C10H10N6, the three N atoms in the 2-positions of the pyrazole rings (the ones not bridging to the central C atom are acceptors for weak C—H⋯N contacts with H⋯N distances ranging from 2.49 to 2.59 Å). These furnish the formation of layers perpendicular to [100]. An ortho­rhom­bic polymorph of the title compound has already been described [McLauchlan et al. (2004[McLauchlan, C. C., Varda, A. N. & Giles, J. R. (2004). Acta Cryst. E60, o1419-o1420.]). Acta Cryst. E60, o1419–o1420].

Related literature

The compound was prepared according to a published procedure (Reger et al., 2000[Reger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120-128.]). For a structure analysis of the ortho­rhom­bic polymorph, see: McLauchlan et al. (2004[McLauchlan, C. C., Varda, A. N. & Giles, J. R. (2004). Acta Cryst. E60, o1419-o1420.]). For classification of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N6

  • Mr = 214.24

  • Triclinic, [P \overline 1]

  • a = 7.7216 (9) Å

  • b = 7.8946 (6) Å

  • c = 9.4143 (10) Å

  • α = 99.292 (8)°

  • β = 100.023 (9)°

  • γ = 107.045 (9)°

  • V = 526.36 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 (2) K

  • 0.34 × 0.20 × 0.14 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: analytical (de Meulenaer & Tompa, 1965[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.]) Tmin = 0.975, Tmax = 0.989

  • 4340 measured reflections

  • 2117 independent reflections

  • 1054 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.082

  • S = 0.83

  • 2117 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯N6i 1.00 2.49 3.451 (2) 161
C6—H6⋯N2ii 0.95 2.51 3.432 (2) 163
C1—H1⋯N4iii 0.95 2.59 3.353 (2) 138
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z; (iii) -x+1, -y, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, United Kingdom.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, United Kingdom.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound was synthesized as a neutral tridentate ligand for coordination studies with transition metals.

In the molecule, three pyrazole moieties are N-bound to a central C atom (Fig. 1). The molecule is found in a non-symmetric conformation in the solid state. The highest possible symmetry C3v is broken by the ring containing N4 which is flipped by about 180°.

If only such contacts whose range falls by about 0.2 Å below the sum of van der Waals radii are considered, the crystal structure shows two C–H···N contacts. Infinite strands along [0 1 0] are formed by C6—H6···N2 contacts (Fig. 2). This pattern can be described according to graph-set analysis (Etter et al., 1990; Bernstein et al., 1995) with a C(7) descriptor on the unitary level. In addition, dimeric units are formed by interaction of the H atom of C10 and N6 (Fig. 3). These dimers can be described with a R22(8) descriptor on the unitary level. Both these described interactions give rise to tubes along [0 1 0].

Considering also contacts whose range falls below the sum of van der Waals radii by only about 0.1 Å, a second dimeric ring system is obvious with a R22(12) descriptor formed by the H atom of C1 and N4 (Fig. 4). In combination with the interactions described above, this second ring system features the formation of layers perpendicular to [1 0 0] (Fig. 5).

The molecular packing is shown in Figure 6.

Related literature top

The compound was prepared according to a published procedure (Reger et al., 2000). For a structure analysis of the orthorhombic polymorph, see: McLauchlan et al. (2004). For classification of hydrogen bonds, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

The compound was prepared according to a published procedure (Reger et al., 2000) upon reaction of pyrazole and chloroform in alkaline aqueous media in the presence of a phase-transfer catalyst (tetrabutylammonium chloride).

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 1.00 Å for the tertiary C atom and C—H 0.95 Å for aromatic C atoms) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. Strands formed by intermolecular C–H···N contacts in the crystal structure of the title compound, viewed along [1 0 0]. Symmetry codes: ix, y - 1, z; iix, y + 1, z.
[Figure 3] Fig. 3. Dimeric units in the crystal structure of the title compound, formed by intermolecular C–H···N contacts whose ranges fall by about 0.2 Å below the sum of van der Waals radii of the corresponding atoms, viewed along [0 1 0]. Symmetry code: i -x + 1, -y + 1, -z + 1.
[Figure 4] Fig. 4. Dimeric units in the crystal structure of the title compound, formed by intermolecular C–H···N contacts whose ranges fall by about 0.1 Å below the sum of van der Waals radii of the corresponding atoms, viewed along [0 1 0]. Symmetry code: i -x + 1, -y, -z.
[Figure 5] Fig. 5. Schematic presentation of the layers formed by C—H···N contacts. Viewing direction approximately along [1 0 0].
[Figure 6] Fig. 6. The packing of the title compound, viewed along [0 1 0].
Tripyrazol-1-ylmethane top
Crystal data top
C10H10N6Z = 2
Mr = 214.24F(000) = 224
Triclinic, P1Dx = 1.352 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7216 (9) ÅCell parameters from 1494 reflections
b = 7.8946 (6) Åθ = 3.9–26.3°
c = 9.4143 (10) ŵ = 0.09 mm1
α = 99.292 (8)°T = 200 K
β = 100.023 (9)°Block, colourless
γ = 107.045 (9)°0.34 × 0.20 × 0.14 mm
V = 526.36 (10) Å3
Data collection top
Nonius KappaCCD
diffractometer
2117 independent reflections
Radiation source: fine-focus sealed tube1054 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 26.3°, θmin = 3.9°
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
h = 99
Tmin = 0.975, Tmax = 0.989k = 99
4340 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.04P)2]
where P = (Fo2 + 2Fc2)/3
2117 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C10H10N6γ = 107.045 (9)°
Mr = 214.24V = 526.36 (10) Å3
Triclinic, P1Z = 2
a = 7.7216 (9) ÅMo Kα radiation
b = 7.8946 (6) ŵ = 0.09 mm1
c = 9.4143 (10) ÅT = 200 K
α = 99.292 (8)°0.34 × 0.20 × 0.14 mm
β = 100.023 (9)°
Data collection top
Nonius KappaCCD
diffractometer
2117 independent reflections
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
1054 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.989Rint = 0.030
4340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 0.83Δρmax = 0.13 e Å3
2117 reflectionsΔρmin = 0.18 e Å3
145 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N50.36455 (16)0.27051 (16)0.27731 (13)0.0334 (3)
N10.64066 (18)0.38873 (17)0.19270 (15)0.0379 (3)
N60.28341 (18)0.38479 (16)0.33973 (14)0.0409 (4)
N30.63243 (17)0.18619 (16)0.35571 (14)0.0367 (3)
C100.5661 (2)0.32745 (19)0.31338 (16)0.0334 (4)
H100.61250.43320.40050.040*
N20.78449 (19)0.54772 (17)0.22761 (17)0.0539 (4)
N40.6002 (2)0.02927 (18)0.25599 (16)0.0517 (4)
C70.1030 (2)0.2989 (2)0.28350 (19)0.0491 (5)
H70.00860.34530.30720.059*
C40.7280 (2)0.1888 (2)0.49067 (19)0.0489 (5)
H40.76520.28450.57660.059*
C90.2372 (2)0.1197 (2)0.18445 (18)0.0444 (4)
H90.26190.02190.12830.053*
C80.0671 (2)0.1351 (2)0.18683 (18)0.0497 (5)
H80.05100.05110.13350.060*
C60.6797 (3)0.0647 (2)0.3351 (2)0.0582 (5)
H60.68070.18300.29610.070*
C10.5986 (3)0.3080 (2)0.0478 (2)0.0535 (5)
H10.50390.19560.00040.064*
C20.7163 (3)0.4167 (3)0.0163 (2)0.0641 (6)
H20.72150.39750.11750.077*
C30.8267 (3)0.5611 (3)0.0972 (3)0.0656 (6)
H30.92310.66020.08420.079*
C50.7606 (3)0.0283 (3)0.4800 (2)0.0599 (5)
H50.82540.01170.55600.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N50.0307 (8)0.0385 (8)0.0336 (8)0.0143 (6)0.0090 (7)0.0083 (6)
N10.0393 (8)0.0377 (8)0.0436 (9)0.0164 (6)0.0167 (7)0.0141 (7)
N60.0413 (9)0.0479 (8)0.0409 (9)0.0237 (7)0.0141 (7)0.0087 (7)
N30.0416 (8)0.0411 (8)0.0325 (8)0.0213 (6)0.0091 (7)0.0085 (7)
C100.0334 (9)0.0360 (9)0.0325 (9)0.0149 (7)0.0079 (8)0.0062 (7)
N20.0499 (9)0.0383 (9)0.0822 (12)0.0167 (7)0.0294 (9)0.0183 (8)
N40.0703 (10)0.0433 (9)0.0505 (10)0.0312 (8)0.0175 (8)0.0085 (8)
C70.0349 (11)0.0708 (13)0.0519 (12)0.0241 (9)0.0156 (9)0.0242 (10)
C40.0463 (11)0.0698 (13)0.0410 (11)0.0276 (9)0.0133 (9)0.0221 (9)
C90.0423 (11)0.0436 (11)0.0377 (11)0.0079 (9)0.0037 (9)0.0004 (8)
C80.0372 (11)0.0635 (13)0.0390 (11)0.0066 (9)0.0030 (9)0.0105 (9)
C60.0707 (13)0.0529 (12)0.0802 (16)0.0404 (11)0.0395 (13)0.0348 (12)
C10.0595 (12)0.0647 (12)0.0408 (11)0.0214 (10)0.0187 (10)0.0154 (10)
C20.0760 (15)0.0869 (15)0.0625 (14)0.0479 (12)0.0409 (13)0.0427 (13)
C30.0698 (14)0.0579 (13)0.0996 (18)0.0327 (11)0.0552 (15)0.0422 (13)
C50.0639 (13)0.0855 (15)0.0598 (14)0.0454 (11)0.0279 (12)0.0449 (12)
Geometric parameters (Å, º) top
N5—C91.3516 (18)C7—H70.9500
N5—N61.3565 (15)C4—C51.354 (2)
N5—C101.4475 (18)C4—H40.9500
N1—C11.348 (2)C9—C81.357 (2)
N1—N21.3562 (16)C9—H90.9500
N1—C101.4486 (17)C8—H80.9500
N6—C71.3243 (19)C6—C51.378 (2)
N3—C41.3473 (19)C6—H60.9500
N3—N41.3566 (16)C1—C21.351 (2)
N3—C101.4397 (18)C1—H10.9500
C10—H101.0000C2—C31.373 (3)
N2—C31.336 (2)C2—H20.9500
N4—C61.330 (2)C3—H30.9500
C7—C81.378 (2)C5—H50.9500
C9—N5—N6111.92 (13)C5—C4—H4126.7
C9—N5—C10130.33 (14)N5—C9—C8106.78 (15)
N6—N5—C10117.71 (12)N5—C9—H9126.6
C1—N1—N2112.14 (13)C8—C9—H9126.6
C1—N1—C10130.61 (13)C9—C8—C7105.04 (15)
N2—N1—C10117.11 (13)C9—C8—H8127.5
C7—N6—N5103.53 (12)C7—C8—H8127.5
C4—N3—N4112.51 (13)N4—C6—C5112.70 (17)
C4—N3—C10126.82 (14)N4—C6—H6123.7
N4—N3—C10120.67 (13)C5—C6—H6123.7
N3—C10—N5111.58 (11)N1—C1—C2107.29 (16)
N3—C10—N1111.25 (11)N1—C1—H1126.4
N5—C10—N1111.28 (12)C2—C1—H1126.4
N3—C10—H10107.5C1—C2—C3104.79 (17)
N5—C10—H10107.5C1—C2—H2127.6
N1—C10—H10107.5C3—C2—H2127.6
C3—N2—N1102.69 (15)N2—C3—C2113.08 (16)
C6—N4—N3102.95 (14)N2—C3—H3123.5
N6—C7—C8112.73 (15)C2—C3—H3123.5
N6—C7—H7123.6C4—C5—C6105.23 (17)
C8—C7—H7123.6C4—C5—H5127.4
N3—C4—C5106.61 (16)C6—C5—H5127.4
N3—C4—H4126.7
C9—N5—N6—C70.54 (15)C10—N3—N4—C6179.60 (13)
C10—N5—N6—C7178.36 (12)N5—N6—C7—C80.47 (17)
C4—N3—C10—N5113.15 (16)N4—N3—C4—C50.17 (17)
N4—N3—C10—N566.40 (16)C10—N3—C4—C5179.76 (13)
C4—N3—C10—N1121.92 (15)N6—N5—C9—C80.41 (17)
N4—N3—C10—N158.53 (17)C10—N5—C9—C8177.88 (13)
C9—N5—C10—N351.4 (2)N5—C9—C8—C70.10 (17)
N6—N5—C10—N3131.27 (13)N6—C7—C8—C90.24 (19)
C9—N5—C10—N173.53 (18)N3—N4—C6—C50.21 (18)
N6—N5—C10—N1103.82 (13)N2—N1—C1—C20.57 (19)
C1—N1—C10—N373.6 (2)C10—N1—C1—C2176.15 (15)
N2—N1—C10—N3101.77 (14)N1—C1—C2—C30.2 (2)
C1—N1—C10—N551.5 (2)N1—N2—C3—C20.5 (2)
N2—N1—C10—N5133.13 (13)C1—C2—C3—N20.2 (2)
C1—N1—N2—C30.65 (17)N3—C4—C5—C60.28 (18)
C10—N1—N2—C3176.88 (13)N4—C6—C5—C40.3 (2)
C4—N3—N4—C60.02 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···N6i1.002.493.451 (2)161
C6—H6···N2ii0.952.513.432 (2)163
C1—H1···N4iii0.952.593.353 (2)138
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H10N6
Mr214.24
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)7.7216 (9), 7.8946 (6), 9.4143 (10)
α, β, γ (°)99.292 (8), 100.023 (9), 107.045 (9)
V3)526.36 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.34 × 0.20 × 0.14
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionAnalytical
(de Meulenaer & Tompa, 1965)
Tmin, Tmax0.975, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
4340, 2117, 1054
Rint0.030
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.082, 0.83
No. of reflections2117
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.18

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···N6i1.002.493.451 (2)161
C6—H6···N2ii0.952.513.432 (2)163
C1—H1···N4iii0.952.593.353 (2)138
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x+1, y, z.
 

Acknowledgements

TK thanks the Hanns-Seidel-Stiftung for a PhD scholarship financed by the Bundesministerium für Bildung und Forschung.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcLauchlan, C. C., Varda, A. N. & Giles, J. R. (2004). Acta Cryst. E60, o1419–o1420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, United Kingdom.  Google Scholar
First citationReger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120–128.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds