metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(η7-cyclo­hepta­trien­yl)tri-μ-hydrido-dimolybdenum(0,I)

aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

(Received 10 December 2008; accepted 11 December 2008; online 17 December 2008)

In the title compound, [Mo2(η7-C7H7)2(μ-H)3], which displays crystallographic mirror symmetry, two (η7-C7H7)Mo units are linked along the Mo—Mo axis by three bridging hydride ligands. The Mo—Mo distance is 2.5732 (4) Å. The perpendicular distances of the Mo atoms from the C7 planes are 1.5827 (8) and 1.5814 (8) Å, with individual Mo—C bond lengths in the range 2.261 (2)–2.2789 (14) Å. Mo—H distances range from 1.77 (3) to 1.85 (4) Å, with Mo—H—Mo angles of 89 (2) and 92 (1)°.

Related literature

For related literature, see: Alvarez et al. (2006[Alvarez, M. A., Garcia, M. E., Ramos, A. & Ruiz, M. A. (2006). Organometallics, 26, 5374-5380.]); Darensbourg et al. (1980[Darensbourg, M. Y., Atwood, J. L., Hunter, W. E. & Burch, R. R. Jr (1980). J. Am. Chem. Soc. 101, 3290-3292.]); Jones et al. (1980[Jones, R. A., Chiu, K. W., Wilkinson, G., Galas, A. M. R. & Hursthouse, M. B. (1980). J. Chem. Soc. Chem. Commun. pp. 408-409.]); Lin et al. (1993[Lin, J. T., Yeh, A. C., Tasai, T. Y. R. & Wen, Y. S. (1993). J. Organomet. Chem. 453, 221-229.]); Süss-Fink & Therrien (2007[Süss-Fink, G. & Therrien, B. (2007). Organometallics, 26, 766-774.]); Petersen et al. (1981[Petersen, J. L., Masimo, A. & Stewart, R. P. Jr (1981). J. Organomet. Chem. 208, 55-71.]); Shima & Suzuki (2005[Shima, T. & Suzuki, H. (2005). Organometallics, 24, 3939-3945.]); Tamm et al. (2004[Tamm, M., Bannenberg, T., Frölich, R., Grimme, S. & Gerenkamp, M. (2004). Dalton Trans. pp. 482-491.], 2006[Tamm, M., Dressel, B., Bannenberg, T., Grunenberg, J. & Herdtweck, E. (2006). Z. Naturforsch. Teil B, 61, 896-903.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo2(C7H7)2H3]

  • Mr = 377.16

  • Orthorhombic, P n m a

  • a = 17.844 (2) Å

  • b = 11.3036 (16) Å

  • c = 6.2981 (8) Å

  • V = 1270.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.94 mm−1

  • T = 133 (2) K

  • 0.38 × 0.20 × 0.04 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.526, Tmax = 0.926

  • 25354 measured reflections

  • 2023 independent reflections

  • 1871 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.041

  • S = 1.06

  • 2023 reflections

  • 86 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mo1—C1 2.261 (2)
Mo1—C3 2.2638 (14)
Mo1—C2 2.2740 (15)
Mo1—C4 2.2753 (14)
Mo1—Mo2 2.5732 (4)
Mo1—H9 1.81 (3)
Mo1—H10 1.85 (4)
Mo2—C7 2.2603 (14)
Mo2—C5 2.264 (2)
Mo2—C8 2.2742 (15)
Mo2—C6 2.2789 (14)
Mo2—H9 1.77 (3)
Mo2—H10 1.82 (4)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Significant recent attention has been paid to dinuclear trihydrido complexes, which tend to be soluble in both polar organic solvents and water and thus have potential applications in aqueous organometallic chemistry. A useful synthesis of such complexes is reaction of the corresponding aquo complexes with sodium borohydride in water. Here we report the formation of the title compound through the reaction of the corresponding triacetonitrile complex of molybdenum with sodium borohydride in acetonitrile. The same reaction, but in the presence of tricyclohexylphosphane, affords a tetrahydroborate complex (Tamm et al., 2006). Most dinuclear tri- and polyhydrido complexes contain either two cyclopentadienyl rings or two arene rings (Shima et al., 2005; Süss-Fink et al., 2007), and this is thus the first synthesis of a dinuclear trihydrido complex that contains two cycloheptatrienyl rings. If these rings are formally assigned the charge +1, corresponding to an aromatic π system, then the metal oxidation states are mixed (0,I). Related structural motifs have been observed for halide-bridged dimolybdenum complexes (Tamm et al., 2004).

The X-ray structure analysis of the title compound reveals two (η7-C7H7)Mo units linked by three bridging hydrido ligands. The molecule possesses a crystallographic mirror plane passing through both molybdenum atoms, the atoms C1 and H1 of the cycloheptatrienyl ligands, and the hydride H10. The perpendicular distances of the Mo atoms from the C7 planes are 1.5827 (8) Å for Mo1 and 1.5814 (8) Å for Mo2, with individual Mo—C bond lengths in the range 2.261 (2) – 2.2789 (14) Å. The two C7 planes (r.m.s. deviation 0.005, 0.008 Å) are almost parallel, with an interplanar angle of 1.59 (7) Å. The molecular axis, defined as the sequence (Centroid ring 1)—Mo1—Mo2—(Centroid ring 2), is essentially linear, with Cent—Mo—Mo angles of 179°. The Mo—H—Mo bonds can be described as three-centre, two-electron (3c-2 e) bonds, with Mo—H distances between 1.77 (3) and 1.85 (4) Å.

The Mo—Mo bond length of 2.5732 (4) Å is, as expected, shorter than the Mo—Mo bonds in monohydrido (Mo—H—Mo) complexes, where this distance lies in the range 3.4056 (5)–3.540 (1) Å (Petersen et al., 1981; Darensbourg et al., 1980; Lin et al., 1993). The monohydrido complex [Mo2(η5-C5H5)2(µ-H)(SnPh3)(CO)2(PCy2H)] reported by Alvarez et al. (2006) contains a formal MoMo bond with a length (2.5730 (6) Å) almost identical to that in the title complex. There is only one report of a dihydrido complex with a quadruply bonded Mo—Mo (2.194 (3) Å) unit (Jones et al., 1980).

Related literature top

For related literature, see: Alvarez et al. (2006); Darensbourg et al. (1980); Jones et al. (1980); Lin et al. (1993); Süss-Fink & Therrien (2007); Petersen et al. (1981); Shima & Suzuki (2005); Tamm et al. (2004, 2006). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···.? etc. Please revise this section as indicated.

Experimental top

0.1324 g NaBH4 (0.44 mmol) was suspended in ethanol and cooled to 0 °C. A solution of [(η7-C7H7)Mo(NCMe)3]PF6 (0.1324 g, 3.50 mmol) in acetonitile was added to this suspension. The mixture was stirred at room temperature for several hours. After removal of the solvent and subsequently drying under high vacuum the residue was extracted with hexane/diethyl ether (1:2). Single crystals of the title compound were obtained by cooling of this solution.

Refinement top

The bridging H atoms were identified in difference syntheses and freely refined. Other (aromatic) hydrogen atoms were included using a riding model with C—H 0.95 Å and U(H) values fixed at 1.2Uiso(C) of the parent C atom.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The formula unit of the title compound in the crystal. Ellipsoids represent 50% probability levels.
Bis(η7-cycloheptatrienyl)tri-µ-hydrido-dimolybdenum(0,I) top
Crystal data top
[Mo2(C7H7)2H3]Dx = 1.972 Mg m3
Mr = 377.16Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 7837 reflections
a = 17.844 (2) Åθ = 2.3–30.5°
b = 11.3036 (16) ŵ = 1.94 mm1
c = 6.2981 (8) ÅT = 133 K
V = 1270.3 (3) Å3Tablet, green
Z = 40.38 × 0.20 × 0.04 mm
F(000) = 740
Data collection top
Bruker SMART 1000 CCD
diffractometer
2023 independent reflections
Radiation source: fine-focus sealed tube1871 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.192 pixels mm-1θmax = 30.5°, θmin = 2.3°
ω and ϕ scansh = 2525
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1615
Tmin = 0.526, Tmax = 0.926l = 88
25354 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.041H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0195P)2 + 1.0664P]
where P = (Fo2 + 2Fc2)/3
2023 reflections(Δ/σ)max = 0.001
86 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Mo2(C7H7)2H3]V = 1270.3 (3) Å3
Mr = 377.16Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 17.844 (2) ŵ = 1.94 mm1
b = 11.3036 (16) ÅT = 133 K
c = 6.2981 (8) Å0.38 × 0.20 × 0.04 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2023 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1871 reflections with I > 2σ(I)
Tmin = 0.526, Tmax = 0.926Rint = 0.026
25354 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0150 restraints
wR(F2) = 0.041H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.48 e Å3
2023 reflectionsΔρmin = 0.41 e Å3
86 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.138195 (8)0.25000.59745 (3)0.01163 (5)
Mo20.007079 (8)0.25000.42733 (3)0.01206 (5)
C10.17862 (12)0.25000.9377 (4)0.0280 (5)
H10.15480.25001.07250.034*
C20.19390 (8)0.13719 (15)0.8514 (3)0.0261 (3)
H20.18040.07150.93740.031*
C30.22664 (8)0.10988 (14)0.6537 (3)0.0247 (3)
H30.23090.02800.62220.030*
C40.25402 (8)0.18763 (15)0.4960 (3)0.0231 (3)
H40.27520.15110.37410.028*
C50.11081 (11)0.25000.5604 (4)0.0225 (4)
H50.13180.25000.69910.027*
C60.09750 (8)0.13700 (14)0.4723 (3)0.0234 (3)
H60.11210.07140.55690.028*
C70.06509 (8)0.10969 (13)0.2738 (3)0.0233 (3)
H70.05890.02780.24490.028*
C80.04060 (8)0.18731 (14)0.1119 (2)0.0225 (3)
H80.02170.15070.01290.027*
H90.0858 (14)0.155 (2)0.421 (4)0.058 (8)*
H100.041 (2)0.25000.700 (6)0.061 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00941 (7)0.01301 (8)0.01246 (8)0.0000.00047 (5)0.000
Mo20.00958 (7)0.01379 (8)0.01280 (8)0.0000.00056 (5)0.000
C10.0166 (9)0.0542 (16)0.0133 (10)0.0000.0030 (7)0.000
C20.0178 (6)0.0309 (8)0.0296 (8)0.0025 (6)0.0072 (6)0.0149 (7)
C30.0157 (6)0.0181 (6)0.0403 (9)0.0047 (5)0.0071 (6)0.0001 (6)
C40.0119 (6)0.0330 (8)0.0243 (8)0.0045 (5)0.0004 (5)0.0074 (6)
C50.0123 (8)0.0354 (12)0.0199 (10)0.0000.0017 (7)0.000
C60.0141 (6)0.0272 (7)0.0289 (8)0.0070 (5)0.0019 (5)0.0059 (6)
C70.0184 (6)0.0204 (6)0.0313 (8)0.0036 (5)0.0070 (6)0.0044 (6)
C80.0188 (6)0.0307 (8)0.0181 (7)0.0004 (6)0.0045 (5)0.0067 (6)
Geometric parameters (Å, º) top
Mo1—C12.261 (2)C1—C21.413 (2)
Mo1—C3i2.2638 (14)C1—C2i1.413 (2)
Mo1—C32.2638 (14)C1—H10.9500
Mo1—C2i2.2740 (15)C2—C31.409 (2)
Mo1—C22.2740 (15)C2—H20.9500
Mo1—C4i2.2753 (14)C3—C41.414 (2)
Mo1—C42.2753 (14)C3—H30.9500
Mo1—Mo22.5732 (4)C4—C4i1.410 (3)
Mo1—H91.81 (3)C4—H40.9500
Mo1—H101.85 (4)C5—C61.4128 (19)
Mo2—C72.2603 (14)C5—C6i1.4128 (19)
Mo2—C7i2.2603 (14)C5—H50.9500
Mo2—C52.264 (2)C6—C71.412 (2)
Mo2—C82.2742 (15)C6—H60.9500
Mo2—C8i2.2742 (15)C7—C81.414 (2)
Mo2—C62.2789 (14)C7—H70.9500
Mo2—C6i2.2789 (14)C8—C8i1.417 (3)
Mo2—H91.77 (3)C8—H80.9500
Mo2—H101.82 (4)
C1—Mo1—C3i68.24 (6)C8i—Mo2—Mo1134.73 (4)
C1—Mo1—C368.24 (6)C6—Mo2—Mo1133.85 (4)
C3i—Mo1—C388.79 (8)C6i—Mo2—Mo1133.85 (4)
C1—Mo1—C2i36.30 (5)C7—Mo2—H990.9 (8)
C3i—Mo1—C2i36.19 (6)C7i—Mo2—H9150.4 (8)
C3—Mo1—C2i88.71 (6)C5—Mo2—H9138.2 (9)
C1—Mo1—C236.30 (5)C8—Mo2—H995.0 (8)
C3i—Mo1—C288.71 (6)C8i—Mo2—H9117.8 (8)
C3—Mo1—C236.19 (6)C6—Mo2—H9108.1 (9)
C2i—Mo1—C268.21 (9)C6i—Mo2—H9173.4 (8)
C1—Mo1—C4i88.65 (7)Mo1—Mo2—H944.6 (8)
C3i—Mo1—C4i36.29 (6)C7—Mo2—H10126.4 (6)
C3—Mo1—C4i68.13 (6)C7i—Mo2—H10126.4 (6)
C2i—Mo1—C4i68.09 (6)C5—Mo2—H1087.8 (12)
C2—Mo1—C4i88.53 (6)C8—Mo2—H10161.5 (2)
C1—Mo1—C488.65 (7)C8i—Mo2—H10161.5 (2)
C3i—Mo1—C468.13 (6)C6—Mo2—H1099.0 (10)
C3—Mo1—C436.29 (6)C6i—Mo2—H1099.0 (10)
C2i—Mo1—C488.53 (6)Mo1—Mo2—H1045.9 (12)
C2—Mo1—C468.09 (6)H9—Mo2—H1075.9 (12)
C4i—Mo1—C436.10 (8)C2—C1—C2i129.0 (2)
C1—Mo1—Mo2133.21 (6)C2—C1—Mo172.36 (11)
C3i—Mo1—Mo2134.35 (4)C2i—C1—Mo172.36 (11)
C3—Mo1—Mo2134.35 (4)C2—C1—H1115.5
C2i—Mo1—Mo2133.65 (4)C2i—C1—H1115.5
C2—Mo1—Mo2133.65 (4)Mo1—C1—H1134.8
C4i—Mo1—Mo2135.14 (4)C3—C2—C1128.13 (16)
C4—Mo1—Mo2135.14 (4)C3—C2—Mo171.51 (9)
C1—Mo1—H9138.4 (8)C1—C2—Mo171.34 (11)
C3i—Mo1—H9150.9 (8)C3—C2—H2115.9
C3—Mo1—H992.2 (8)C1—C2—H2115.9
C2i—Mo1—H9172.9 (8)Mo1—C2—H2136.7
C2—Mo1—H9108.9 (8)C2—C3—C4128.89 (14)
C4i—Mo1—H9118.8 (8)C2—C3—Mo172.30 (8)
C4—Mo1—H996.4 (8)C4—C3—Mo172.30 (8)
Mo2—Mo1—H943.5 (8)C2—C3—H3115.6
C1—Mo1—H1088.2 (12)C4—C3—H3115.6
C3i—Mo1—H10126.8 (6)Mo1—C3—H3134.8
C3—Mo1—H10126.8 (6)C4i—C4—C3128.44 (9)
C2i—Mo1—H1099.5 (10)C4i—C4—Mo171.95 (4)
C2—Mo1—H1099.5 (10)C3—C4—Mo171.42 (8)
C4i—Mo1—H10161.7 (2)C4i—C4—H4115.8
C4—Mo1—H10161.7 (2)C3—C4—H4115.8
Mo2—Mo1—H1045.0 (12)Mo1—C4—H4136.3
H9—Mo1—H1074.3 (12)C6—C5—C6i129.4 (2)
C7—Mo2—C7i89.12 (8)C6—C5—Mo272.45 (10)
C7—Mo2—C568.23 (5)C6i—C5—Mo272.45 (10)
C7i—Mo2—C568.23 (5)C6—C5—H5115.3
C7—Mo2—C836.34 (6)C6i—C5—H5115.3
C7i—Mo2—C868.40 (6)Mo2—C5—H5134.9
C5—Mo2—C888.61 (7)C7—C6—C5127.92 (15)
C7—Mo2—C8i68.40 (6)C7—C6—Mo271.17 (8)
C7i—Mo2—C8i36.34 (6)C5—C6—Mo271.32 (10)
C5—Mo2—C8i88.61 (7)C7—C6—H6116.0
C8—Mo2—C8i36.31 (8)C5—C6—H6116.0
C7—Mo2—C636.23 (6)Mo2—C6—H6137.1
C7i—Mo2—C688.85 (6)C6—C7—C8129.00 (14)
C5—Mo2—C636.23 (5)C6—C7—Mo272.60 (8)
C8—Mo2—C668.13 (6)C8—C7—Mo272.36 (8)
C8i—Mo2—C688.67 (6)C6—C7—H7115.5
C7—Mo2—C6i88.85 (6)C8—C7—H7115.5
C7i—Mo2—C6i36.23 (6)Mo2—C7—H7134.4
C5—Mo2—C6i36.23 (5)C7—C8—C8i128.35 (9)
C8—Mo2—C6i88.67 (6)C7—C8—Mo271.30 (8)
C8i—Mo2—C6i68.13 (6)C8i—C8—Mo271.84 (4)
C6—Mo2—C6i68.18 (8)C7—C8—H8115.8
C7—Mo2—Mo1134.12 (4)C8i—C8—H8115.8
C7i—Mo2—Mo1134.12 (4)Mo2—C8—H8136.5
C5—Mo2—Mo1133.67 (6)Mo1—H9—Mo292 (1)
C8—Mo2—Mo1134.73 (4)Mo1—H10—Mo289 (2)
C1—Mo1—Mo2—C7102.21 (6)C4i—Mo1—C3—C2120.12 (10)
C3i—Mo1—Mo2—C7155.85 (9)C4—Mo1—C3—C2142.53 (14)
C3—Mo1—Mo2—C70.26 (9)Mo2—Mo1—C3—C2107.37 (9)
C2i—Mo1—Mo2—C7153.00 (9)C1—Mo1—C3—C4120.06 (10)
C2—Mo1—Mo2—C751.41 (9)C3i—Mo1—C3—C453.07 (11)
C4i—Mo1—Mo2—C7103.85 (9)C2i—Mo1—C3—C489.27 (10)
C4—Mo1—Mo2—C751.74 (9)C2—Mo1—C3—C4142.53 (14)
C1—Mo1—Mo2—C7i102.21 (6)C4i—Mo1—C3—C422.42 (7)
C3i—Mo1—Mo2—C7i0.26 (9)Mo2—Mo1—C3—C4110.10 (9)
C3—Mo1—Mo2—C7i155.85 (9)C2—C3—C4—C4i1.3 (2)
C2i—Mo1—Mo2—C7i51.41 (9)Mo1—C3—C4—C4i46.82 (7)
C2—Mo1—Mo2—C7i153.00 (9)C2—C3—C4—Mo148.12 (14)
C4i—Mo1—Mo2—C7i51.74 (9)C1—Mo1—C4—C4i89.56 (2)
C4—Mo1—Mo2—C7i103.85 (9)C3i—Mo1—C4—C4i22.52 (6)
C1—Mo1—Mo2—C50.0C3—Mo1—C4—C4i143.08 (8)
C3i—Mo1—Mo2—C5101.94 (6)C2i—Mo1—C4—C4i53.25 (5)
C3—Mo1—Mo2—C5101.94 (6)C2—Mo1—C4—C4i120.30 (5)
C2i—Mo1—Mo2—C550.79 (7)Mo2—Mo1—C4—C4i109.12 (5)
C2—Mo1—Mo2—C550.79 (7)C1—Mo1—C4—C353.52 (9)
C4i—Mo1—Mo2—C5153.94 (6)C3i—Mo1—C4—C3120.56 (13)
C4—Mo1—Mo2—C5153.94 (6)C2i—Mo1—C4—C389.83 (10)
C1—Mo1—Mo2—C8153.98 (6)C2—Mo1—C4—C322.78 (9)
C3i—Mo1—Mo2—C8104.07 (9)C4i—Mo1—C4—C3143.08 (8)
C3—Mo1—Mo2—C852.04 (9)Mo2—Mo1—C4—C3107.80 (9)
C2i—Mo1—Mo2—C8155.22 (9)C7—Mo2—C5—C622.41 (10)
C2—Mo1—Mo2—C8103.19 (9)C7i—Mo2—C5—C6120.56 (12)
C4i—Mo1—Mo2—C852.08 (9)C8—Mo2—C5—C653.32 (11)
C4—Mo1—Mo2—C80.04 (8)C8i—Mo2—C5—C689.65 (11)
C1—Mo1—Mo2—C8i153.98 (6)C6i—Mo2—C5—C6143.0 (2)
C3i—Mo1—Mo2—C8i52.04 (9)Mo1—Mo2—C5—C6108.51 (10)
C3—Mo1—Mo2—C8i104.07 (9)C7—Mo2—C5—C6i120.56 (12)
C2i—Mo1—Mo2—C8i103.19 (9)C7i—Mo2—C5—C6i22.41 (10)
C2—Mo1—Mo2—C8i155.22 (9)C8—Mo2—C5—C6i89.65 (11)
C4i—Mo1—Mo2—C8i0.04 (8)C8i—Mo2—C5—C6i53.32 (11)
C4—Mo1—Mo2—C8i52.08 (9)C6—Mo2—C5—C6i143.0 (2)
C1—Mo1—Mo2—C651.00 (6)Mo1—Mo2—C5—C6i108.51 (10)
C3i—Mo1—Mo2—C6152.94 (9)C6i—C5—C6—C72.0 (4)
C3—Mo1—Mo2—C650.94 (9)Mo2—C5—C6—C745.95 (16)
C2i—Mo1—Mo2—C6101.80 (9)C6i—C5—C6—Mo248.0 (2)
C2—Mo1—Mo2—C60.21 (9)C7i—Mo2—C6—C790.09 (11)
C4i—Mo1—Mo2—C6155.06 (9)C5—Mo2—C6—C7143.20 (15)
C4—Mo1—Mo2—C6102.94 (9)C8—Mo2—C6—C722.96 (9)
C1—Mo1—Mo2—C6i51.00 (6)C8i—Mo2—C6—C753.74 (10)
C3i—Mo1—Mo2—C6i50.94 (9)C6i—Mo2—C6—C7120.65 (8)
C3—Mo1—Mo2—C6i152.94 (9)Mo1—Mo2—C6—C7108.80 (9)
C2i—Mo1—Mo2—C6i0.21 (9)C7—Mo2—C6—C5143.20 (15)
C2—Mo1—Mo2—C6i101.80 (9)C7i—Mo2—C6—C553.11 (11)
C4i—Mo1—Mo2—C6i102.94 (9)C8—Mo2—C6—C5120.24 (12)
C4—Mo1—Mo2—C6i155.06 (9)C8i—Mo2—C6—C589.46 (11)
C3i—Mo1—C1—C2120.18 (12)C6i—Mo2—C6—C522.55 (12)
C3—Mo1—C1—C222.42 (10)Mo1—Mo2—C6—C5108.00 (11)
C2i—Mo1—C1—C2142.6 (2)C5—C6—C7—C82.5 (3)
C4i—Mo1—C1—C289.35 (11)Mo2—C6—C7—C848.52 (14)
C4—Mo1—C1—C253.24 (11)C5—C6—C7—Mo246.00 (16)
Mo2—Mo1—C1—C2108.70 (10)C7i—Mo2—C7—C689.25 (10)
C3i—Mo1—C1—C2i22.42 (10)C5—Mo2—C7—C622.41 (9)
C3—Mo1—C1—C2i120.18 (12)C8—Mo2—C7—C6142.34 (13)
C2—Mo1—C1—C2i142.6 (2)C8i—Mo2—C7—C6119.89 (10)
C4i—Mo1—C1—C2i53.24 (11)C6i—Mo2—C7—C653.01 (10)
C4—Mo1—C1—C2i89.35 (11)Mo1—Mo2—C7—C6108.01 (9)
Mo2—Mo1—C1—C2i108.70 (10)C7i—Mo2—C7—C853.09 (10)
C2i—C1—C2—C31.8 (4)C5—Mo2—C7—C8119.93 (10)
Mo1—C1—C2—C346.32 (16)C8i—Mo2—C7—C822.45 (7)
C2i—C1—C2—Mo148.2 (2)C6—Mo2—C7—C8142.34 (13)
C1—Mo1—C2—C3143.14 (15)C6i—Mo2—C7—C889.33 (10)
C3i—Mo1—C2—C389.72 (11)Mo1—Mo2—C7—C8109.65 (9)
C2i—Mo1—C2—C3120.36 (8)C6—C7—C8—C8i2.0 (2)
C4i—Mo1—C2—C353.42 (10)Mo2—C7—C8—C8i46.58 (7)
C4—Mo1—C2—C322.83 (9)C6—C7—C8—Mo248.61 (14)
Mo2—Mo1—C2—C3109.41 (8)C7i—Mo2—C8—C7120.70 (12)
C3i—Mo1—C2—C153.42 (11)C5—Mo2—C8—C753.62 (8)
C3—Mo1—C2—C1143.14 (15)C8i—Mo2—C8—C7143.16 (8)
C2i—Mo1—C2—C122.78 (12)C6—Mo2—C8—C722.90 (9)
C4i—Mo1—C2—C189.72 (11)C6i—Mo2—C8—C789.86 (10)
C4—Mo1—C2—C1120.31 (12)Mo1—Mo2—C8—C7107.88 (8)
Mo2—Mo1—C2—C1107.45 (11)C7—Mo2—C8—C8i143.16 (8)
C1—C2—C3—C41.9 (3)C7i—Mo2—C8—C8i22.47 (5)
Mo1—C2—C3—C448.12 (14)C5—Mo2—C8—C8i89.54 (2)
C1—C2—C3—Mo146.26 (17)C6—Mo2—C8—C8i120.26 (5)
C1—Mo1—C3—C222.48 (9)C6i—Mo2—C8—C8i53.30 (5)
C3i—Mo1—C3—C289.47 (10)Mo1—Mo2—C8—C8i108.96 (5)
C2i—Mo1—C3—C253.27 (10)
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Mo2(C7H7)2H3]
Mr377.16
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)133
a, b, c (Å)17.844 (2), 11.3036 (16), 6.2981 (8)
V3)1270.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.94
Crystal size (mm)0.38 × 0.20 × 0.04
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.526, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
25354, 2023, 1871
Rint0.026
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.041, 1.06
No. of reflections2023
No. of parameters86
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.41

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

Selected geometric parameters (Å, º) top
Mo1—C12.261 (2)Mo2—C72.2603 (14)
Mo1—C32.2638 (14)Mo2—C52.264 (2)
Mo1—C22.2740 (15)Mo2—C82.2742 (15)
Mo1—C42.2753 (14)Mo2—C62.2789 (14)
Mo1—Mo22.5732 (4)Mo2—H91.77 (3)
Mo1—H91.81 (3)Mo2—H101.82 (4)
Mo1—H101.85 (4)
Mo1—H9—Mo292 (1)Mo1—H10—Mo289 (2)
 

References

First citationAlvarez, M. A., Garcia, M. E., Ramos, A. & Ruiz, M. A. (2006). Organometallics, 26, 5374–5380.  Web of Science CSD CrossRef Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDarensbourg, M. Y., Atwood, J. L., Hunter, W. E. & Burch, R. R. Jr (1980). J. Am. Chem. Soc. 101, 3290–3292.  CSD CrossRef Web of Science Google Scholar
First citationJones, R. A., Chiu, K. W., Wilkinson, G., Galas, A. M. R. & Hursthouse, M. B. (1980). J. Chem. Soc. Chem. Commun. pp. 408–409.  CrossRef Web of Science Google Scholar
First citationLin, J. T., Yeh, A. C., Tasai, T. Y. R. & Wen, Y. S. (1993). J. Organomet. Chem. 453, 221–229.  CSD CrossRef CAS Web of Science Google Scholar
First citationPetersen, J. L., Masimo, A. & Stewart, R. P. Jr (1981). J. Organomet. Chem. 208, 55–71.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShima, T. & Suzuki, H. (2005). Organometallics, 24, 3939–3945.  Web of Science CSD CrossRef CAS Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSüss-Fink, G. & Therrien, B. (2007). Organometallics, 26, 766–774.  Google Scholar
First citationTamm, M., Bannenberg, T., Frölich, R., Grimme, S. & Gerenkamp, M. (2004). Dalton Trans. pp. 482–491.  Web of Science CSD CrossRef Google Scholar
First citationTamm, M., Dressel, B., Bannenberg, T., Grunenberg, J. & Herdtweck, E. (2006). Z. Naturforsch. Teil B, 61, 896–903.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds