organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di­chloro-N,N′-(o-phenyl­ene)di­benzene­sulfonamide

aDepartment of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
*Correspondence e-mail: blever@yorku.ca

(Received 6 November 2008; accepted 25 November 2008; online 20 December 2008)

The title compound, C18H14Cl2N2O4S2, is a diamine that is a precursor to a quinonoid bidentate redox-active ligand. The dihedral angles between the central phenyl ring and the end rings are 87.5(1) and 60.7(1)°, while the two end rings make a dihedral angle of 82.5(1)°. The crystal structure is stabilized by two weak inter­molecular N—H⋯O hydrogen bonds, as well as one intra­molecular C—H⋯O and one N—H⋯N hydrogen bond.

Related literature

For the synthesis of related substituted o-phenyl­enediamines, see: Massacret et al. (1999[Massacret, M., Lhoste, P. & Sinou, D. (1999). Eur. J. Org. Chem. 10, 129-134.]). For background to the use of substituted o-benzoquinones as ligands, see: Masui & Lever (1993[Masui, H. & Lever, A. B. P. (1993). Inorg. Chem. 32, 2199-2201.]); Kalinina et al. (2008[Kalinina, D., Dares, C., Kaluarachchi, H., Potvin, P. G. & Lever, A. B. P. (2008). Inorg. Chem. 47, 10110-10126.]) and references therein.

[Scheme 1]

Experimental

Crystal data
  • C18H14Cl2N2O4S2

  • Mr = 457.33

  • Triclinic, [P \overline 1]

  • a = 7.7225 (4) Å

  • b = 11.1920 (4) Å

  • c = 11.9325 (5) Å

  • α = 109.669 (2)°

  • β = 91.420 (2)°

  • γ = 101.782 (2)°

  • V = 945.79 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 150 (1) K

  • 0.40 × 0.36 × 0.30 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.748, Tmax = 0.876

  • 8650 measured reflections

  • 4235 independent reflections

  • 3386 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.122

  • S = 1.08

  • 4235 reflections

  • 261 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.87 (3) 2.12 (3) 2.936 (3) 157 (2)
N2—H2⋯O2ii 0.85 (3) 2.30 (3) 3.107 (3) 159 (2)
N1—H1⋯N2 0.87 (3) 2.45 (3) 2.811 (3) 106 (2)
C6—H6⋯O1 0.95 2.22 2.900 (3) 128
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y, z.

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Benzoquinonediimine compounds have been extensively studied as ligands in metal complex systems (Kalinina et al., 2008). As free ligands, they exist in the diamine form, however, they have the ability to bind to a metal in one of three oxidation states: as o-phenylenediamine, its one-electron oxidized o-semiquinonediiminate, or its doubly oxidized and strongly π-accepting o-benzoquinonediimine form. In addition to being redox-active, these ligands also often exhibit non-innocent behaviour. Ruthenium complexes of o-benzoquinonediimines possess highly covalent bonds. The extent of electronic coupling between the metal and diimine ligand can be tuned by using substituented o-benzoquinones (Masui & Lever, 1993, and Kalinina et al., 2008). We present here the synthesis and crystal structure of the title compound (I). In (I) (Fig. 1), highly electron-withdrawing groups (p-chlorophenylsulfonyl, PCPS) are bound to the amine N atoms, and are expected to exhibit a greater covalent metal-benzoquinonediimine ligand bond character than the unsubstituted diimine. The C1—N1—S1—C7 dihedral angle is 81.0 (2) °, while the C2—N2—S2—C13 dihedral angle is only 68.6 (2)°. The p-chlorophenyl rings are essentially perpendicular to the N—S bond, likely due to steric hindrance and intermolecular H bonding between the ortho H atoms, and the sulfonyl O atoms (Fig. 1). The crystal structure is stabilized by two weak intermolecular N—H···O hydrogen bonds (Fig. 2), as well as three intramolecular C—H···O and one N—H···N hydrogen bonds which increases the stability of the crystal, (Table 1). The bonds parameters are similar to those in the other arylsulfonamides.

Related literature top

For the synthesis of related substituted o-phenylenediamines, see: Massacret et al. (1999). For background to the use of substituted o-benzoquinones as ligands, see: Masui & Lever (1993); Kalinina et al. (2008) and references therein.

Experimental top

(I) was synthesized for the first time according to methods described by Massacret et al., 1999, using p-chlorophenylsulfonyl chloride (10 mmol) as the arenesulfonyl chloride. o-phenylenediamine (540 mg, 5 mmol) was twice sublimed under reduced pressure prior to use. After purification, (I) was dissolved in a minimal amount of ethanol, and then added to an aqueous solution of CuCl2 (20 ml, 0.15 M). Colorless block-like crystals suitable for x-ray diffraction studies were obtained after allowing the solution to stand for 2 weeks.

Refinement top

All H atoms attached to C atoms were added in calculated locations and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). Both H atoms attached to N atoms were located in the electron-density difference map, with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) showing the molecular structure and intramolecular H bonding present. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing diagram of (I) showing the intermolecular H bonds present. H atoms not involved in H bonding are not shown. Displacement ellipsoids are drawn at the 30% probability level.
4,4'-Dichloro-N,N'-(o-phenylene)dibenzenesulfonamide top
Crystal data top
C18H14Cl2N2O4S2Z = 2
Mr = 457.33F(000) = 468
Triclinic, P1Dx = 1.606 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7225 (4) ÅCell parameters from 4103 reflections
b = 11.1920 (4) Åθ = 2.6–27.5°
c = 11.9325 (5) ŵ = 0.59 mm1
α = 109.669 (2)°T = 150 K
β = 91.420 (2)°Prism, colourless
γ = 101.782 (2)°0.40 × 0.36 × 0.30 mm
V = 945.79 (7) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4235 independent reflections
Radiation source: fine-focus sealed tube3386 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ scans and ω scans with κ offsetsθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 109
Tmin = 0.748, Tmax = 0.876k = 1414
8650 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.06P)2 + 0.6434P]
where P = (Fo2 + 2Fc2)/3
4235 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
C18H14Cl2N2O4S2γ = 101.782 (2)°
Mr = 457.33V = 945.79 (7) Å3
Triclinic, P1Z = 2
a = 7.7225 (4) ÅMo Kα radiation
b = 11.1920 (4) ŵ = 0.59 mm1
c = 11.9325 (5) ÅT = 150 K
α = 109.669 (2)°0.40 × 0.36 × 0.30 mm
β = 91.420 (2)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4235 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3386 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 0.876Rint = 0.032
8650 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.48 e Å3
4235 reflectionsΔρmin = 0.69 e Å3
261 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1732 (3)0.8391 (2)0.77764 (19)0.0171 (4)
C20.0029 (3)0.8152 (2)0.72753 (19)0.0171 (4)
C30.1000 (3)0.9105 (2)0.7632 (2)0.0222 (5)
H30.21780.89350.72730.027*
C40.0274 (3)1.0303 (2)0.8506 (2)0.0262 (5)
H40.09401.09570.87440.031*
C50.1440 (3)1.0528 (2)0.9026 (2)0.0257 (5)
H50.19341.13330.96460.031*
C60.2444 (3)0.9599 (2)0.8657 (2)0.0225 (5)
H60.36300.97850.90080.027*
C70.3601 (3)0.6325 (2)0.8929 (2)0.0195 (5)
C80.3196 (3)0.4973 (2)0.8469 (2)0.0270 (5)
H80.33920.45240.76690.032*
C90.2500 (4)0.4285 (3)0.9191 (2)0.0314 (6)
H90.22200.33600.88910.038*
C100.2220 (3)0.4956 (3)1.0349 (2)0.0284 (6)
C110.2637 (4)0.6307 (3)1.0819 (2)0.0310 (6)
H110.24480.67521.16220.037*
C120.3334 (3)0.7000 (2)1.0100 (2)0.0266 (5)
H120.36250.79251.04050.032*
C130.2243 (3)0.7466 (2)0.45683 (19)0.0189 (4)
C140.4080 (3)0.7072 (2)0.4534 (2)0.0210 (5)
H140.45810.63780.48010.025*
C150.5169 (3)0.7697 (2)0.4109 (2)0.0225 (5)
H150.64250.74400.40780.027*
C160.4392 (3)0.8706 (2)0.3730 (2)0.0236 (5)
C170.2571 (3)0.9119 (2)0.3774 (2)0.0264 (5)
H170.20770.98260.35230.032*
C180.1476 (3)0.8486 (2)0.4190 (2)0.0233 (5)
H180.02210.87450.42170.028*
N10.2723 (3)0.7422 (2)0.73182 (17)0.0203 (4)
H10.222 (4)0.673 (3)0.672 (3)0.024*
N20.0870 (3)0.68766 (18)0.64404 (17)0.0191 (4)
H20.188 (4)0.654 (3)0.660 (2)0.023*
O10.5452 (2)0.84388 (16)0.87507 (14)0.0235 (4)
O20.5228 (2)0.63638 (16)0.70620 (14)0.0232 (4)
O30.0908 (2)0.70716 (18)0.48023 (15)0.0289 (4)
O40.1729 (2)0.52320 (16)0.44441 (16)0.0311 (4)
S10.44267 (7)0.71968 (5)0.79949 (5)0.01842 (15)
S20.08688 (7)0.65782 (5)0.50003 (5)0.02006 (15)
Cl10.13235 (9)0.40953 (8)1.12463 (7)0.0420 (2)
Cl20.57712 (9)0.94836 (6)0.31859 (6)0.03448 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0178 (11)0.0206 (11)0.0154 (10)0.0057 (9)0.0010 (8)0.0087 (9)
C20.0169 (11)0.0195 (11)0.0155 (10)0.0034 (9)0.0013 (8)0.0072 (9)
C30.0196 (11)0.0263 (12)0.0237 (12)0.0074 (10)0.0014 (9)0.0111 (10)
C40.0310 (13)0.0252 (12)0.0241 (12)0.0123 (11)0.0056 (10)0.0073 (10)
C50.0331 (14)0.0221 (12)0.0188 (11)0.0067 (10)0.0031 (10)0.0032 (10)
C60.0243 (12)0.0210 (11)0.0196 (11)0.0035 (9)0.0048 (9)0.0051 (9)
C70.0163 (11)0.0256 (12)0.0180 (11)0.0072 (9)0.0012 (8)0.0080 (9)
C80.0342 (14)0.0255 (12)0.0223 (12)0.0102 (11)0.0037 (10)0.0075 (10)
C90.0379 (15)0.0261 (13)0.0343 (14)0.0084 (11)0.0036 (12)0.0152 (12)
C100.0251 (13)0.0389 (15)0.0296 (13)0.0096 (11)0.0007 (10)0.0216 (12)
C110.0324 (14)0.0425 (15)0.0190 (12)0.0094 (12)0.0044 (10)0.0111 (11)
C120.0285 (13)0.0278 (13)0.0221 (12)0.0066 (11)0.0007 (10)0.0070 (10)
C130.0195 (11)0.0224 (11)0.0141 (10)0.0064 (9)0.0012 (8)0.0046 (9)
C140.0193 (11)0.0251 (12)0.0205 (11)0.0063 (9)0.0027 (9)0.0096 (9)
C150.0181 (11)0.0296 (13)0.0212 (11)0.0089 (10)0.0029 (9)0.0086 (10)
C160.0312 (13)0.0268 (12)0.0152 (11)0.0162 (11)0.0017 (9)0.0052 (9)
C170.0319 (14)0.0242 (12)0.0243 (12)0.0032 (10)0.0019 (10)0.0120 (10)
C180.0199 (12)0.0268 (12)0.0226 (12)0.0023 (10)0.0006 (9)0.0096 (10)
N10.0183 (10)0.0222 (10)0.0185 (9)0.0057 (8)0.0048 (8)0.0046 (8)
N20.0154 (9)0.0202 (10)0.0208 (10)0.0005 (8)0.0030 (8)0.0084 (8)
O10.0170 (8)0.0242 (9)0.0245 (8)0.0009 (7)0.0062 (7)0.0062 (7)
O20.0180 (8)0.0303 (9)0.0220 (8)0.0080 (7)0.0014 (6)0.0087 (7)
O30.0194 (9)0.0431 (11)0.0265 (9)0.0115 (8)0.0040 (7)0.0126 (8)
O40.0343 (10)0.0182 (8)0.0327 (10)0.0087 (8)0.0144 (8)0.0017 (7)
S10.0146 (3)0.0234 (3)0.0175 (3)0.0048 (2)0.0017 (2)0.0074 (2)
S20.0180 (3)0.0221 (3)0.0189 (3)0.0076 (2)0.0027 (2)0.0043 (2)
Cl10.0365 (4)0.0621 (5)0.0440 (4)0.0103 (3)0.0061 (3)0.0403 (4)
Cl20.0453 (4)0.0365 (4)0.0275 (3)0.0237 (3)0.0036 (3)0.0107 (3)
Geometric parameters (Å, º) top
C1—C61.395 (3)C11—H110.9500
C1—C21.408 (3)C12—H120.9500
C1—N11.422 (3)C13—C141.392 (3)
C2—C31.385 (3)C13—C181.393 (3)
C2—N21.443 (3)C13—S21.769 (2)
C3—C41.387 (3)C14—C151.382 (3)
C3—H30.9500C14—H140.9500
C4—C51.385 (4)C15—C161.386 (3)
C4—H40.9500C15—H150.9500
C5—C61.383 (3)C16—C171.381 (4)
C5—H50.9500C16—Cl21.743 (2)
C6—H60.9500C17—C181.387 (3)
C7—C81.388 (3)C17—H170.9500
C7—C121.390 (3)C18—H180.9500
C7—S11.764 (2)N1—S11.6329 (18)
C8—C91.387 (3)N1—H10.87 (3)
C8—H80.9500N2—S21.637 (2)
C9—C101.380 (4)N2—H20.85 (3)
C9—H90.9500O1—S11.4296 (17)
C10—C111.388 (4)O2—S11.4359 (17)
C10—Cl11.735 (3)O3—S21.4278 (18)
C11—C121.388 (4)O4—S21.4312 (17)
C6—C1—C2118.0 (2)C14—C13—C18121.3 (2)
C6—C1—N1123.3 (2)C14—C13—S2119.09 (17)
C2—C1—N1118.56 (19)C18—C13—S2119.43 (18)
C3—C2—C1120.5 (2)C15—C14—C13119.5 (2)
C3—C2—N2119.54 (19)C15—C14—H14120.3
C1—C2—N2119.79 (19)C13—C14—H14120.3
C2—C3—C4120.8 (2)C14—C15—C16118.7 (2)
C2—C3—H3119.6C14—C15—H15120.6
C4—C3—H3119.6C16—C15—H15120.6
C5—C4—C3118.7 (2)C17—C16—C15122.4 (2)
C5—C4—H4120.6C17—C16—Cl2119.05 (19)
C3—C4—H4120.6C15—C16—Cl2118.53 (19)
C6—C5—C4121.1 (2)C16—C17—C18119.0 (2)
C6—C5—H5119.4C16—C17—H17120.5
C4—C5—H5119.4C18—C17—H17120.5
C5—C6—C1120.7 (2)C17—C18—C13119.1 (2)
C5—C6—H6119.6C17—C18—H18120.5
C1—C6—H6119.6C13—C18—H18120.5
C8—C7—C12121.3 (2)C1—N1—S1127.72 (16)
C8—C7—S1119.10 (18)C1—N1—H1117.6 (18)
C12—C7—S1119.63 (18)S1—N1—H1112.0 (18)
C9—C8—C7119.2 (2)C2—N2—S2119.94 (15)
C9—C8—H8120.4C2—N2—H2115.3 (19)
C7—C8—H8120.4S2—N2—H2110.4 (18)
C10—C9—C8119.5 (2)O1—S1—O2119.90 (10)
C10—C9—H9120.3O1—S1—N1108.49 (10)
C8—C9—H9120.3O2—S1—N1105.21 (10)
C9—C10—C11121.6 (2)O1—S1—C7107.30 (10)
C9—C10—Cl1119.4 (2)O2—S1—C7107.80 (11)
C11—C10—Cl1119.0 (2)N1—S1—C7107.61 (10)
C12—C11—C10119.1 (2)O3—S2—O4121.51 (12)
C12—C11—H11120.4O3—S2—N2106.60 (10)
C10—C11—H11120.4O4—S2—N2105.45 (11)
C11—C12—C7119.3 (2)O3—S2—C13107.47 (11)
C11—C12—H12120.3O4—S2—C13106.22 (10)
C7—C12—H12120.3N2—S2—C13109.20 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.87 (3)2.12 (3)2.936 (3)157 (2)
N2—H2···O2ii0.85 (3)2.30 (3)3.107 (3)159 (2)
N1—H1···N20.87 (3)2.45 (3)2.811 (3)106 (2)
C6—H6···O10.952.222.900 (3)128
C8—H8···O20.952.582.931 (3)103
C18—H18···O30.952.502.887 (3)104
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H14Cl2N2O4S2
Mr457.33
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)7.7225 (4), 11.1920 (4), 11.9325 (5)
α, β, γ (°)109.669 (2), 91.420 (2), 101.782 (2)
V3)945.79 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.40 × 0.36 × 0.30
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.748, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
8650, 4235, 3386
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.122, 1.08
No. of reflections4235
No. of parameters261
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.69

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.87 (3)2.12 (3)2.936 (3)157 (2)
N2—H2···O2ii0.85 (3)2.30 (3)3.107 (3)159 (2)
N1—H1···N20.87 (3)2.45 (3)2.811 (3)106 (2)
C6—H6···O10.952.222.900 (3)127.9
C8—H8···O20.952.582.931 (3)102.5
C18—H18···O30.952.502.887 (3)104.1
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z.
 

Acknowledgements

The authors thank Dr Alan J. Lough for acquiring the X-ray diffraction data and for helpful discussions. Financial support for this work was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC). CD thanks NSERC for a post-graduate scholarship.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKalinina, D., Dares, C., Kaluarachchi, H., Potvin, P. G. & Lever, A. B. P. (2008). Inorg. Chem. 47, 10110–10126.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMassacret, M., Lhoste, P. & Sinou, D. (1999). Eur. J. Org. Chem. 10, 129–134.  CrossRef Google Scholar
First citationMasui, H. & Lever, A. B. P. (1993). Inorg. Chem. 32, 2199–2201.  CrossRef CAS Web of Science Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds