organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-di­phenyl­phosphor­yl­oxy-2-aza­bi­cyclo­[2.2.1]hept-5-ene-3-exo-carboxyl­ate

aCentro de Investigação em Química, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687 4169-007, Porto, Portugal, and bDepartamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
*Correspondence e-mail: carlos.sousa@fc.up.pt

(Received 2 December 2008; accepted 16 December 2008; online 20 December 2008)

In the title compound, C20H20NO4P, the dihedral angle between the phenyl rings is 68.52 (7)°. In the crystal structure, the mol­ecules are linked by a weak C—H⋯π(arene) inter­action along [010] involving the phenyl CH group and the phenyl rings. There are no further significant inter­molecular inter­actions.

Related literature

For the preparation of the precursor of the title compound, see: Sousa et al. (2008[Sousa, C. A. D., Vale, M. L. C., Rodrígues-Borges, J. E. & García-Mera, X. (2008). Tetrahedron Lett. 49, 5777-5781.]). For related literature about this type of bicyclic compound and their relevance see: Vale et al. (2006[Vale, M. L. C., Rodrígues-Borges, J. E., Caamaño, O., Fernández, F. & García-Mera, X. (2006). Tetrahedron, 62, 9475-9482.]), Alves et al. (2006[Alves, M. J., García-Mera, X., Vale, M. L. C., Santos, T. P., Aguiar, F. R. & Rodrígues-Borges, J. E. (2006). Tetrahedron Lett. 47, 7595-7597.]), Yoda et al. (1995[Yoda, H., Yamazaki, H., Kawauchi, M. & Takabe, K. (1995). Tetrahedron Asymmetry, 6, 2669-2672.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20NO4P

  • Mr = 369.34

  • Monoclinic, P 21 /c

  • a = 18.4223 (6) Å

  • b = 8.5522 (3) Å

  • c = 11.6022 (4) Å

  • β = 97.1810 (10)°

  • V = 1813.60 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100 (2) K

  • 0.37 × 0.34 × 0.34 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.871, Tmax = 0.940

  • 14828 measured reflections

  • 3717 independent reflections

  • 3172 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.05

  • 3717 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cg1i 0.95 2.77 3.566 (2) 142
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the C15–C20 ring.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1997[Altomare, A., Cascarano, C., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. & Spagna, R. (1997). SIR97. University of Bari, Italy.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The stucture of the title compound, (I), is shown in Fig. 1. It can be seen the existence of three chiral centers at C2 (R), C5 (S) and C6 (R). In the crystalline structure, the molecules are linked by a weak C—H···π interaction, Fig. 2 [H12-πi 2.77 Å, C12-H12-π 142°, C12-π 3.566 (2) Å, symmetry code: (i) 1-x,1/2+y, 1/2-z] along [010] directions. There are no further significant intermolecular interactions.

Related literature top

For the preparation of the precursor of the title compound, see: Sousa et al. (2008). For related literature about this type of bicyclic compound and their relevance see: Vale et al. (2006), Alves et al. (2006), Yoda et al. (1995). Cg1 is the centroid of the C15–C20 ring.

Experimental top

The title compound was synthesized from the previously prepared (3exo)-2-hydroxy-2-azabicyclo[2.2.1]hept-5-ene-3-carboxylate (Sousa et al. 2008). Equimolar amounts of (3exo)-2-hydroxy-2-azabicyclo[2.2.1]hept-5-ene-3-carboxylate (0.56 g, 3.3 mmol) and diphenylpfosphinic chloride (0.63 ml, 3.3 mmol), in the presence of 1 eq. of anidrous triethylamine and and a catalytic quantity of DMAP, were let to react overnigth in dichloromethane, at room temperature under argon atmosphere. Water was added and the product was extracted with dichloromethane (3 × 15 ml). The organic layers were dried over sodium sulfate and the solvent was evaporated. The obtained product was purified by flash chromatography (eluent: dichloromethane/diethyl ether 1:1), leading to a light clear yellow oil in 80% yield. Crystals of (I) were made from a slow evaporation of a dichloromethane/hexane solution.

Refinement top

All H atoms were found in a difference Fourier map and placed in geometrically idealized and constrained to ride on their parent atoms [C—H = 0.95–1.00 Å and Uiso(H) = 1.2 or 1.5Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the three chiral carbons C2, C5 and C6 and the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2] Fig. 2. Part of the crystal structute of (I) viewed along the c axis. Dashed lines show C—H···π (arene) interactions. Only H atoms participating in hydrogen bonding are shown. π is the centroid of the ring defined by atoms C15-C20.
Methyl 2-diphenylphosphoryloxy-2-azabicyclo[2.2.1]hept-5-ene-3-exo- carboxylate top
Crystal data top
C20H20NO4PF(000) = 776
Mr = 369.34Dx = 1.353 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1953 reflections
a = 18.4223 (6) Åθ = 3.1–25.9°
b = 8.5522 (3) ŵ = 0.18 mm1
c = 11.6022 (4) ÅT = 100 K
β = 97.181 (1)°Prism, colourless
V = 1813.60 (11) Å30.37 × 0.34 × 0.34 mm
Z = 4
Data collection top
Bruker ApexII CCD area-detector
diffractometer
3717 independent reflections
Radiation source: sealed tube3172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
phi and ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 2322
Tmin = 0.871, Tmax = 0.940k = 010
14828 measured reflectionsl = 014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.8843P]
where P = (Fo2 + 2Fc2)/3
3717 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C20H20NO4PV = 1813.60 (11) Å3
Mr = 369.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.4223 (6) ŵ = 0.18 mm1
b = 8.5522 (3) ÅT = 100 K
c = 11.6022 (4) Å0.37 × 0.34 × 0.34 mm
β = 97.181 (1)°
Data collection top
Bruker ApexII CCD area-detector
diffractometer
3717 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3172 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.940Rint = 0.033
14828 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.05Δρmax = 0.29 e Å3
3717 reflectionsΔρmin = 0.41 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.04005 (8)0.24766 (17)0.08174 (13)0.0156 (3)
H1A0.0050.30990.06140.019*
H1B0.03180.16460.13810.019*
C20.10739 (8)0.34831 (17)0.12086 (13)0.0140 (3)
H20.10380.41590.19020.017*
C30.11615 (8)0.43459 (18)0.00937 (13)0.0157 (3)
H30.13280.5390.0030.019*
C40.09614 (8)0.33679 (18)0.07788 (13)0.0170 (3)
H40.09650.3580.15820.02*
C50.07271 (8)0.18529 (18)0.02579 (13)0.0152 (3)
H50.04080.11440.07880.018*
C60.14566 (8)0.11298 (17)0.03659 (12)0.0124 (3)
H60.18490.11890.01550.015*
C70.13407 (7)0.05517 (17)0.07081 (12)0.0126 (3)
C80.10791 (9)0.23359 (18)0.21479 (14)0.0188 (3)
H8A0.06380.27590.16940.028*
H8B0.10210.23640.29760.028*
H8C0.15030.29680.2010.028*
C90.37374 (8)0.32042 (17)0.19955 (13)0.0135 (3)
C100.39313 (8)0.28107 (18)0.09030 (13)0.0156 (3)
H100.35920.22810.03530.019*
C110.46227 (8)0.31986 (19)0.06275 (14)0.0196 (3)
H110.47580.29230.0110.024*
C120.51155 (8)0.3985 (2)0.14240 (15)0.0220 (4)
H120.5590.42320.12360.026*
C130.49180 (9)0.4412 (2)0.24924 (15)0.0228 (4)
H130.52530.49740.30290.027*
C140.42326 (8)0.40209 (18)0.27826 (14)0.0180 (3)
H140.410.4310.35190.022*
C150.29184 (7)0.05353 (17)0.27096 (13)0.0125 (3)
C160.31090 (8)0.05303 (18)0.18853 (13)0.0156 (3)
H160.32180.0170.11510.019*
C170.31393 (9)0.21192 (18)0.21417 (14)0.0190 (3)
H170.32840.28410.15910.023*
C180.29590 (8)0.26536 (18)0.31971 (15)0.0200 (3)
H180.29720.37420.33640.024*
C190.27594 (8)0.16006 (19)0.40103 (14)0.0185 (3)
H190.26290.1970.47290.022*
C200.27503 (8)0.00078 (18)0.37771 (13)0.0149 (3)
H200.26290.07130.43460.018*
N10.16332 (6)0.21932 (14)0.13812 (11)0.0116 (3)
O10.11889 (6)0.07336 (12)0.17981 (9)0.0166 (2)
O20.13582 (6)0.16137 (12)0.00278 (9)0.0190 (2)
O30.23563 (5)0.28855 (12)0.12671 (9)0.0131 (2)
O40.27071 (6)0.34776 (12)0.34900 (9)0.0158 (2)
P10.288697 (19)0.26111 (4)0.24650 (3)0.01112 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0105 (7)0.0152 (8)0.0210 (8)0.0011 (6)0.0016 (6)0.0022 (6)
C20.0121 (7)0.0126 (7)0.0175 (7)0.0026 (6)0.0025 (6)0.0004 (6)
C30.0118 (7)0.0132 (7)0.0218 (8)0.0026 (6)0.0016 (6)0.0041 (6)
C40.0154 (7)0.0179 (8)0.0172 (7)0.0029 (6)0.0000 (6)0.0060 (6)
C50.0130 (7)0.0149 (8)0.0167 (7)0.0011 (6)0.0020 (6)0.0021 (6)
C60.0112 (7)0.0123 (7)0.0135 (7)0.0005 (6)0.0008 (5)0.0000 (6)
C70.0081 (6)0.0149 (7)0.0145 (7)0.0003 (6)0.0001 (5)0.0004 (6)
C80.0206 (8)0.0145 (8)0.0209 (8)0.0045 (6)0.0010 (6)0.0058 (6)
C90.0106 (7)0.0116 (7)0.0180 (7)0.0001 (6)0.0005 (6)0.0035 (6)
C100.0133 (7)0.0161 (8)0.0169 (7)0.0018 (6)0.0003 (6)0.0041 (6)
C110.0170 (8)0.0232 (8)0.0192 (8)0.0001 (6)0.0047 (6)0.0046 (6)
C120.0131 (7)0.0242 (9)0.0289 (9)0.0026 (6)0.0031 (6)0.0075 (7)
C130.0152 (8)0.0235 (9)0.0283 (9)0.0056 (7)0.0031 (7)0.0009 (7)
C140.0157 (7)0.0174 (8)0.0205 (8)0.0009 (6)0.0002 (6)0.0009 (6)
C150.0086 (7)0.0114 (7)0.0165 (7)0.0001 (5)0.0021 (5)0.0011 (6)
C160.0139 (7)0.0163 (8)0.0162 (7)0.0004 (6)0.0008 (6)0.0004 (6)
C170.0188 (8)0.0145 (8)0.0226 (8)0.0031 (6)0.0022 (6)0.0060 (6)
C180.0166 (8)0.0120 (8)0.0296 (9)0.0001 (6)0.0043 (7)0.0042 (7)
C190.0151 (7)0.0198 (8)0.0202 (8)0.0022 (6)0.0002 (6)0.0068 (6)
C200.0121 (7)0.0154 (8)0.0169 (7)0.0008 (6)0.0008 (6)0.0007 (6)
N10.0071 (6)0.0117 (6)0.0161 (6)0.0022 (5)0.0017 (5)0.0004 (5)
O10.0224 (6)0.0119 (5)0.0163 (5)0.0032 (4)0.0049 (4)0.0011 (4)
O20.0245 (6)0.0139 (6)0.0189 (6)0.0012 (4)0.0038 (5)0.0031 (5)
O30.0079 (5)0.0142 (5)0.0168 (5)0.0033 (4)0.0003 (4)0.0029 (4)
O40.0165 (5)0.0135 (5)0.0177 (5)0.0003 (4)0.0030 (4)0.0014 (4)
P10.00981 (19)0.01024 (19)0.0131 (2)0.00066 (14)0.00083 (14)0.00053 (14)
Geometric parameters (Å, º) top
C1—C21.531 (2)C10—C111.392 (2)
C1—C51.546 (2)C10—H100.95
C1—H1A0.99C11—C121.386 (2)
C1—H1B0.99C11—H110.95
C2—N11.5057 (18)C12—C131.384 (2)
C2—C31.515 (2)C12—H120.95
C2—H21C13—C141.388 (2)
C3—C41.329 (2)C13—H130.95
C3—H30.95C14—H140.95
C4—C51.515 (2)C15—C201.393 (2)
C4—H40.95C15—C161.397 (2)
C5—C61.571 (2)C15—P11.7976 (15)
C5—H51C16—C171.391 (2)
C6—N11.4915 (18)C16—H160.95
C6—C71.514 (2)C17—C181.386 (2)
C6—H61C17—H170.95
C7—O21.2064 (18)C18—C191.387 (2)
C7—O11.3379 (17)C18—H180.95
C8—O11.4505 (18)C19—C201.389 (2)
C8—H8A0.98C19—H190.95
C8—H8B0.98C20—H200.95
C8—H8C0.98N1—O31.4786 (15)
C9—C141.395 (2)O3—P11.6133 (10)
C9—C101.400 (2)O4—P11.4737 (11)
C9—P11.7950 (15)
C2—C1—C592.89 (11)C11—C10—H10120.2
C2—C1—H1A113.1C9—C10—H10120.2
C5—C1—H1A113.1C12—C11—C10120.30 (15)
C2—C1—H1B113.1C12—C11—H11119.8
C5—C1—H1B113.1C10—C11—H11119.8
H1A—C1—H1B110.5C13—C12—C11120.11 (14)
N1—C2—C3109.04 (11)C13—C12—H12119.9
N1—C2—C198.23 (11)C11—C12—H12119.9
C3—C2—C1100.92 (12)C12—C13—C14120.20 (15)
N1—C2—H2115.5C12—C13—H13119.9
C3—C2—H2115.5C14—C13—H13119.9
C1—C2—H2115.5C13—C14—C9120.14 (15)
C4—C3—C2107.14 (13)C13—C14—H14119.9
C4—C3—H3126.4C9—C14—H14119.9
C2—C3—H3126.4C20—C15—C16119.59 (14)
C3—C4—C5107.46 (13)C20—C15—P1117.59 (11)
C3—C4—H4126.3C16—C15—P1122.82 (11)
C5—C4—H4126.3C17—C16—C15119.85 (14)
C4—C5—C1100.71 (12)C17—C16—H16120.1
C4—C5—C6104.50 (12)C15—C16—H16120.1
C1—C5—C699.25 (11)C18—C17—C16120.24 (15)
C4—C5—H5116.6C18—C17—H17119.9
C1—C5—H5116.6C16—C17—H17119.9
C6—C5—H5116.6C17—C18—C19120.02 (14)
N1—C6—C7113.33 (11)C17—C18—H18120
N1—C6—C5102.32 (11)C19—C18—H18120
C7—C6—C5110.74 (12)C18—C19—C20120.14 (15)
N1—C6—H6110.1C18—C19—H19119.9
C7—C6—H6110.1C20—C19—H19119.9
C5—C6—H6110.1C19—C20—C15120.11 (14)
O2—C7—O1123.83 (14)C19—C20—H20119.9
O2—C7—C6121.82 (13)C15—C20—H20119.9
O1—C7—C6114.29 (12)O3—N1—C6106.47 (10)
O1—C8—H8A109.5O3—N1—C2107.69 (10)
O1—C8—H8B109.5C6—N1—C2105.28 (11)
H8A—C8—H8B109.5C7—O1—C8115.30 (12)
O1—C8—H8C109.5N1—O3—P1108.68 (8)
H8A—C8—H8C109.5O4—P1—O3116.67 (6)
H8B—C8—H8C109.5O4—P1—C9113.30 (7)
C14—C9—C10119.54 (13)O3—P1—C998.94 (6)
C14—C9—P1117.84 (12)O4—P1—C15112.04 (7)
C10—C9—P1122.54 (11)O3—P1—C15106.49 (6)
C11—C10—C9119.67 (14)C9—P1—C15108.35 (7)
C5—C1—C2—N160.85 (12)C18—C19—C20—C152.1 (2)
C5—C1—C2—C350.47 (12)C16—C15—C20—C191.2 (2)
N1—C2—C3—C468.17 (15)P1—C15—C20—C19179.43 (11)
C1—C2—C3—C434.58 (15)C7—C6—N1—O3120.70 (12)
C2—C3—C4—C50.88 (16)C5—C6—N1—O3120.03 (11)
C3—C4—C5—C132.73 (15)C7—C6—N1—C2125.14 (12)
C3—C4—C5—C669.86 (15)C5—C6—N1—C25.87 (13)
C2—C1—C5—C449.87 (12)C3—C2—N1—O351.25 (14)
C2—C1—C5—C656.93 (12)C1—C2—N1—O3155.87 (10)
C4—C5—C6—N171.20 (13)C3—C2—N1—C662.06 (14)
C1—C5—C6—N132.48 (13)C1—C2—N1—C642.56 (13)
C4—C5—C6—C7167.72 (12)O2—C7—O1—C83.0 (2)
C1—C5—C6—C788.59 (13)C6—C7—O1—C8179.72 (12)
N1—C6—C7—O2162.95 (13)C6—N1—O3—P1127.24 (9)
C5—C6—C7—O282.74 (17)C2—N1—O3—P1120.25 (10)
N1—C6—C7—O119.76 (17)N1—O3—P1—O468.47 (10)
C5—C6—C7—O194.56 (14)N1—O3—P1—C9169.71 (9)
C14—C9—C10—C111.8 (2)N1—O3—P1—C1557.44 (9)
P1—C9—C10—C11174.85 (12)C14—C9—P1—O418.47 (14)
C9—C10—C11—C120.7 (2)C10—C9—P1—O4164.79 (12)
C10—C11—C12—C131.0 (2)C14—C9—P1—O3142.70 (12)
C11—C12—C13—C141.6 (3)C10—C9—P1—O340.56 (14)
C12—C13—C14—C90.4 (2)C14—C9—P1—C15106.51 (13)
C10—C9—C14—C131.3 (2)C10—C9—P1—C1570.23 (14)
P1—C9—C14—C13175.54 (12)C20—C15—P1—O42.24 (13)
C20—C15—C16—C170.9 (2)C16—C15—P1—O4177.14 (11)
P1—C15—C16—C17178.48 (11)C20—C15—P1—O3126.43 (11)
C15—C16—C17—C182.0 (2)C16—C15—P1—O354.19 (13)
C16—C17—C18—C191.1 (2)C20—C15—P1—C9127.97 (11)
C17—C18—C19—C201.0 (2)C16—C15—P1—C951.41 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.952.773.566 (2)142
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H20NO4P
Mr369.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)18.4223 (6), 8.5522 (3), 11.6022 (4)
β (°) 97.181 (1)
V3)1813.60 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.37 × 0.34 × 0.34
Data collection
DiffractometerBruker ApexII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.871, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
14828, 3717, 3172
Rint0.033
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.05
No. of reflections3717
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.41

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1997), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.952.773.566 (2)142
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Centro de Investigação em Química of the University of Porto. The X-ray data were collected at the Unidade de Raios X, RIAIDT, University of Santiago de Compostela. The authors thank Antonio L. Llamas-Saiz for his help and the Fundação para a Ciência e Tecnologia (FCT) and Xunta de Galicia for financial support (grants POCTI/QUI/44471/2002 and 07CSA008203-PR, respectively). CADS thanks the FCT for grant No. SFRH/BD/31526/2006.

References

First citationAltomare, A., Cascarano, C., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. & Spagna, R. (1997). SIR97. University of Bari, Italy.  Google Scholar
First citationAlves, M. J., García-Mera, X., Vale, M. L. C., Santos, T. P., Aguiar, F. R. & Rodrígues-Borges, J. E. (2006). Tetrahedron Lett. 47, 7595–7597.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSousa, C. A. D., Vale, M. L. C., Rodrígues-Borges, J. E. & García-Mera, X. (2008). Tetrahedron Lett. 49, 5777–5781.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVale, M. L. C., Rodrígues-Borges, J. E., Caamaño, O., Fernández, F. & García-Mera, X. (2006). Tetrahedron, 62, 9475–9482.  Google Scholar
First citationYoda, H., Yamazaki, H., Kawauchi, M. & Takabe, K. (1995). Tetrahedron Asymmetry, 6, 2669–2672.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds