organic compounds
4,4,5,5-Tetramethyl-2-(4-pyridinio)imidazoline-1-oxyl-3-oxide chloride
aCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang, 453002, People's Republic of China
*Correspondence e-mail: gaozhy201@sohu.com
The title compound C12H17N3O2+·Cl− consists of a discrete [NITpPyH]+ cation [NITpPy = 2-(4′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide] and a chloride anion. The NITpPy molecule is protonated at the N atom of the pyridyl ring. The anions and cations are connected via N—H⋯Cl hydrogen bonds.
Related literature
For the design and synthesis of molecule-based magnetic materials, see: Bogani et al. (2005); Wang et al. (2004). For nitronyl nitroxide radicals (NITR), see: Fettouhi et al. (2003). For related literature, see: Stroh et al. (1999); Hirel et al. (2001); Chang et al. (2005); Wang et al. (2003). For the synthesis of the title compound see: Ullman et al. (1970, 1972)
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536808043158/bx2189sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808043158/bx2189Isup2.hkl
NITpPy was synthesized according to a literature procedure (Ullman et al.,1970; Ullman et al., 1972). Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from acetonitrile solution and HCl 10:1 (v/v) solution at room temperature.
The H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93 or 0.96 Å and N—H = 0.96 Å and Uiso(H) = 1.2Ueq(carrier) or Uiso(H) = 1.5Ueq(methyl carrier).
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).Fig. 1. ORTEP drawing of the title compound with atom labeling. The thermal ellipsoids are drawn at 30% probability level. |
C12H17N3O2+·Cl− | F(000) = 572 |
Mr = 270.74 | Dx = 1.279 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3005 reflections |
a = 10.863 (14) Å | θ = 2.5–27.3° |
b = 11.927 (15) Å | µ = 0.27 mm−1 |
c = 11.130 (15) Å | T = 291 K |
β = 102.81 (2)° | BLOCK, black |
V = 1406 (3) Å3 | 0.30 × 0.26 × 0.23 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2609 independent reflections |
Radiation source: fine-focus sealed tube | 2120 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
phi and ω scans | θmax = 25.5°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −13→11 |
Tmin = 0.923, Tmax = 0.939 | k = −13→14 |
7172 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0696P)2 + 0.6783P] where P = (Fo2 + 2Fc2)/3 |
2609 reflections | (Δ/σ)max = 0.001 |
167 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C12H17N3O2+·Cl− | V = 1406 (3) Å3 |
Mr = 270.74 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.863 (14) Å | µ = 0.27 mm−1 |
b = 11.927 (15) Å | T = 291 K |
c = 11.130 (15) Å | 0.30 × 0.26 × 0.23 mm |
β = 102.81 (2)° |
Bruker SMART CCD area-detector diffractometer | 2609 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2120 reflections with I > 2σ(I) |
Tmin = 0.923, Tmax = 0.939 | Rint = 0.037 |
7172 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.44 e Å−3 |
2609 reflections | Δρmin = −0.22 e Å−3 |
167 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.05896 (6) | 0.43910 (4) | 0.31130 (6) | 0.0548 (2) | |
O1 | 0.64998 (19) | 1.16127 (15) | 0.74894 (19) | 0.0700 (6) | |
O2 | 0.78794 (19) | 0.86362 (13) | 0.53807 (17) | 0.0633 (5) | |
N1 | 0.92752 (17) | 1.26424 (15) | 0.43535 (17) | 0.0452 (5) | |
H1D | 0.9687 | 1.3101 | 0.3992 | 0.054* | |
N2 | 0.67191 (18) | 1.06169 (14) | 0.71219 (17) | 0.0425 (4) | |
N3 | 0.73993 (17) | 0.92068 (14) | 0.61433 (16) | 0.0395 (4) | |
C1 | 0.8082 (2) | 1.23103 (17) | 0.5864 (2) | 0.0437 (5) | |
H1 | 0.7700 | 1.2586 | 0.6473 | 0.052* | |
C2 | 0.8735 (2) | 1.30278 (18) | 0.5247 (2) | 0.0479 (6) | |
H2 | 0.8799 | 1.3784 | 0.5454 | 0.057* | |
C3 | 0.9190 (2) | 1.15584 (18) | 0.4007 (2) | 0.0437 (5) | |
H3 | 0.9562 | 1.1321 | 0.3375 | 0.052* | |
C4 | 0.8550 (2) | 1.07904 (17) | 0.45867 (19) | 0.0391 (5) | |
H4 | 0.8484 | 1.0045 | 0.4336 | 0.047* | |
C5 | 0.80009 (18) | 1.11518 (16) | 0.55597 (18) | 0.0343 (4) | |
C6 | 0.73824 (19) | 1.03513 (16) | 0.62469 (18) | 0.0348 (5) | |
C7 | 0.6107 (2) | 0.95916 (19) | 0.7557 (2) | 0.0446 (5) | |
C8 | 0.6900 (2) | 0.86274 (18) | 0.7158 (2) | 0.0479 (6) | |
C9 | 0.6147 (3) | 0.9682 (3) | 0.8936 (3) | 0.0755 (9) | |
H9A | 0.7009 | 0.9699 | 0.9387 | 0.113* | |
H9B | 0.5727 | 0.9047 | 0.9193 | 0.113* | |
H9C | 0.5729 | 1.0358 | 0.9093 | 0.113* | |
C10 | 0.4731 (3) | 0.9600 (3) | 0.6823 (3) | 0.0760 (9) | |
H10A | 0.4336 | 1.0290 | 0.6972 | 0.114* | |
H10B | 0.4285 | 0.8981 | 0.7078 | 0.114* | |
H10C | 0.4713 | 0.9533 | 0.5959 | 0.114* | |
C11 | 0.8094 (3) | 0.8328 (3) | 0.8176 (3) | 0.0673 (8) | |
H11A | 0.8630 | 0.7836 | 0.7837 | 0.101* | |
H11B | 0.7839 | 0.7962 | 0.8849 | 0.101* | |
H11C | 0.8546 | 0.9002 | 0.8465 | 0.101* | |
C12 | 0.6206 (4) | 0.7561 (2) | 0.6664 (3) | 0.0855 (11) | |
H12A | 0.5572 | 0.7731 | 0.5938 | 0.128* | |
H12B | 0.5814 | 0.7245 | 0.7279 | 0.128* | |
H12C | 0.6795 | 0.7031 | 0.6462 | 0.128* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0756 (5) | 0.0354 (3) | 0.0595 (4) | −0.0077 (2) | 0.0278 (3) | 0.0030 (2) |
O1 | 0.0900 (14) | 0.0420 (9) | 0.0963 (15) | 0.0035 (9) | 0.0597 (12) | −0.0127 (9) |
O2 | 0.0960 (14) | 0.0354 (8) | 0.0746 (12) | −0.0055 (8) | 0.0536 (11) | −0.0104 (8) |
N1 | 0.0455 (11) | 0.0403 (10) | 0.0500 (11) | −0.0080 (8) | 0.0114 (9) | 0.0098 (8) |
N2 | 0.0454 (11) | 0.0370 (9) | 0.0502 (11) | 0.0003 (7) | 0.0215 (9) | −0.0023 (7) |
N3 | 0.0471 (11) | 0.0319 (8) | 0.0438 (10) | −0.0033 (7) | 0.0197 (8) | −0.0025 (7) |
C1 | 0.0529 (14) | 0.0357 (11) | 0.0439 (12) | −0.0023 (9) | 0.0134 (10) | −0.0043 (9) |
C2 | 0.0575 (15) | 0.0315 (10) | 0.0526 (14) | −0.0059 (9) | 0.0082 (11) | −0.0007 (9) |
C3 | 0.0432 (13) | 0.0431 (11) | 0.0476 (12) | 0.0019 (9) | 0.0159 (10) | 0.0056 (9) |
C4 | 0.0428 (12) | 0.0329 (10) | 0.0439 (12) | −0.0007 (8) | 0.0142 (10) | 0.0002 (8) |
C5 | 0.0331 (11) | 0.0316 (9) | 0.0378 (11) | −0.0006 (8) | 0.0065 (8) | 0.0010 (8) |
C6 | 0.0356 (11) | 0.0329 (10) | 0.0377 (11) | −0.0004 (8) | 0.0115 (9) | −0.0010 (8) |
C7 | 0.0433 (13) | 0.0459 (12) | 0.0495 (13) | −0.0048 (9) | 0.0206 (10) | 0.0017 (9) |
C8 | 0.0563 (14) | 0.0375 (11) | 0.0575 (14) | −0.0053 (10) | 0.0288 (12) | 0.0041 (9) |
C9 | 0.102 (3) | 0.0758 (19) | 0.0605 (17) | 0.0035 (17) | 0.0428 (17) | 0.0043 (14) |
C10 | 0.0460 (16) | 0.080 (2) | 0.102 (3) | −0.0054 (14) | 0.0163 (16) | 0.0114 (17) |
C11 | 0.0678 (18) | 0.0642 (16) | 0.0743 (18) | 0.0131 (13) | 0.0250 (15) | 0.0262 (14) |
C12 | 0.103 (3) | 0.0554 (16) | 0.116 (3) | −0.0362 (17) | 0.064 (2) | −0.0199 (17) |
O1—N2 | 1.295 (3) | C7—C9 | 1.529 (4) |
O2—N3 | 1.285 (2) | C7—C10 | 1.536 (4) |
N1—C2 | 1.343 (3) | C7—C8 | 1.559 (3) |
N1—C3 | 1.346 (3) | C8—C12 | 1.518 (4) |
N1—H1D | 0.8600 | C8—C11 | 1.563 (4) |
N2—C6 | 1.371 (3) | C9—H9A | 0.9600 |
N2—C7 | 1.522 (3) | C9—H9B | 0.9600 |
N3—C6 | 1.370 (3) | C9—H9C | 0.9600 |
N3—C8 | 1.523 (3) | C10—H10A | 0.9600 |
C1—C2 | 1.387 (3) | C10—H10B | 0.9600 |
C1—C5 | 1.421 (3) | C10—H10C | 0.9600 |
C1—H1 | 0.9300 | C11—H11A | 0.9600 |
C2—H2 | 0.9300 | C11—H11B | 0.9600 |
C3—C4 | 1.392 (3) | C11—H11C | 0.9600 |
C3—H3 | 0.9300 | C12—H12A | 0.9600 |
C4—C5 | 1.415 (3) | C12—H12B | 0.9600 |
C4—H4 | 0.9300 | C12—H12C | 0.9600 |
C5—C6 | 1.475 (3) | ||
C2—N1—C3 | 121.81 (19) | C10—C7—C8 | 112.8 (2) |
C2—N1—H1D | 119.1 | C12—C8—N3 | 110.0 (2) |
C3—N1—H1D | 119.1 | C12—C8—C7 | 117.4 (2) |
O1—N2—C6 | 126.78 (18) | N3—C8—C7 | 100.76 (18) |
O1—N2—C7 | 120.83 (19) | C12—C8—C11 | 109.7 (3) |
C6—N2—C7 | 112.09 (17) | N3—C8—C11 | 105.4 (2) |
O2—N3—C6 | 126.73 (17) | C7—C8—C11 | 112.6 (2) |
O2—N3—C8 | 120.85 (18) | C7—C9—H9A | 109.5 |
C6—N3—C8 | 112.09 (17) | C7—C9—H9B | 109.5 |
C2—C1—C5 | 119.6 (2) | H9A—C9—H9B | 109.5 |
C2—C1—H1 | 120.2 | C7—C9—H9C | 109.5 |
C5—C1—H1 | 120.2 | H9A—C9—H9C | 109.5 |
N1—C2—C1 | 120.7 (2) | H9B—C9—H9C | 109.5 |
N1—C2—H2 | 119.6 | C7—C10—H10A | 109.5 |
C1—C2—H2 | 119.6 | C7—C10—H10B | 109.5 |
N1—C3—C4 | 120.6 (2) | H10A—C10—H10B | 109.5 |
N1—C3—H3 | 119.7 | C7—C10—H10C | 109.5 |
C4—C3—H3 | 119.7 | H10A—C10—H10C | 109.5 |
C3—C4—C5 | 119.5 (2) | H10B—C10—H10C | 109.5 |
C3—C4—H4 | 120.2 | C8—C11—H11A | 109.5 |
C5—C4—H4 | 120.2 | C8—C11—H11B | 109.5 |
C4—C5—C1 | 117.69 (18) | H11A—C11—H11B | 109.5 |
C4—C5—C6 | 121.17 (19) | C8—C11—H11C | 109.5 |
C1—C5—C6 | 121.13 (19) | H11A—C11—H11C | 109.5 |
N3—C6—N2 | 108.00 (17) | H11B—C11—H11C | 109.5 |
N3—C6—C5 | 125.80 (18) | C8—C12—H12A | 109.5 |
N2—C6—C5 | 126.18 (19) | C8—C12—H12B | 109.5 |
N2—C7—C9 | 110.2 (2) | H12A—C12—H12B | 109.5 |
N2—C7—C10 | 105.5 (2) | C8—C12—H12C | 109.5 |
C9—C7—C10 | 109.9 (2) | H12A—C12—H12C | 109.5 |
N2—C7—C8 | 101.19 (18) | H12B—C12—H12C | 109.5 |
C9—C7—C8 | 116.3 (2) | ||
C3—N1—C2—C1 | 1.1 (3) | C6—N2—C7—C9 | 143.3 (2) |
C5—C1—C2—N1 | 1.0 (3) | O1—N2—C7—C10 | 76.0 (3) |
C2—N1—C3—C4 | −1.1 (3) | C6—N2—C7—C10 | −98.1 (2) |
N1—C3—C4—C5 | −0.9 (3) | O1—N2—C7—C8 | −166.4 (2) |
C3—C4—C5—C1 | 2.9 (3) | C6—N2—C7—C8 | 19.6 (2) |
C3—C4—C5—C6 | −176.24 (19) | O2—N3—C8—C12 | −40.2 (3) |
C2—C1—C5—C4 | −2.9 (3) | C6—N3—C8—C12 | 146.0 (2) |
C2—C1—C5—C6 | 176.2 (2) | O2—N3—C8—C7 | −164.7 (2) |
O2—N3—C6—N2 | 176.6 (2) | C6—N3—C8—C7 | 21.4 (2) |
C8—N3—C6—N2 | −10.0 (2) | O2—N3—C8—C11 | 78.0 (3) |
O2—N3—C6—C5 | −4.9 (3) | C6—N3—C8—C11 | −95.8 (2) |
C8—N3—C6—C5 | 168.50 (19) | N2—C7—C8—C12 | −141.9 (2) |
O1—N2—C6—N3 | 179.6 (2) | C9—C7—C8—C12 | 98.7 (3) |
C7—N2—C6—N3 | −6.8 (2) | C10—C7—C8—C12 | −29.7 (3) |
O1—N2—C6—C5 | 1.1 (4) | N2—C7—C8—N3 | −22.6 (2) |
C7—N2—C6—C5 | 174.72 (19) | C9—C7—C8—N3 | −142.0 (2) |
C4—C5—C6—N3 | 8.4 (3) | C10—C7—C8—N3 | 89.7 (2) |
C1—C5—C6—N3 | −170.7 (2) | N2—C7—C8—C11 | 89.3 (2) |
C4—C5—C6—N2 | −173.4 (2) | C9—C7—C8—C11 | −30.1 (3) |
C1—C5—C6—N2 | 7.5 (3) | C10—C7—C8—C11 | −158.4 (2) |
O1—N2—C7—C9 | −42.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1D···Cl1i | 0.86 | 2.17 | 3.028 (3) | 174 |
Symmetry code: (i) x+1, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C12H17N3O2+·Cl− |
Mr | 270.74 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 291 |
a, b, c (Å) | 10.863 (14), 11.927 (15), 11.130 (15) |
β (°) | 102.81 (2) |
V (Å3) | 1406 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.27 |
Crystal size (mm) | 0.30 × 0.26 × 0.23 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.923, 0.939 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7172, 2609, 2120 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.140, 1.03 |
No. of reflections | 2609 |
No. of parameters | 167 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.22 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1D···Cl1i | 0.86 | 2.17 | 3.028 (3) | 174.0 |
Symmetry code: (i) x+1, y+1, z. |
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 20471026) and the Natural Science Foundation of Henan Province (No. 0311021200).
References
Bogani, L., Sangregorio, C., Sessoli, R. & &Gatteschi, D. (2005). Angew. Chem. Int. Ed. 44, 5817–5821. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA. Google Scholar
Chang, J.-L., Wang, L.-Y. & Jiang, K. (2005). Acta Cryst. E61, m2100–m2102. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fettouhi, M., Ali, B. E., Morsy, M., Golhen, S., Ouahab, L., Guennic, B. L., Saillard, J. Y., aro, N., Sutter, J. P. & Amouyal, E. (2003). Inorg. Chem. 42, 1316–1321. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hirel, C., Vostrikova, K. E., Pe'caut, J., Ovcharenko, V. I. & Rey, P. (2001). Chem. Eur. J. 7, 2007–2013. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stroh, C., Romero, F. M., Kyritsakas, N., Catala, L., Turek, P. & Ziessel, R. (1999). J. Mater. Chem. 9, 875–882. Web of Science CSD CrossRef CAS Google Scholar
Ullman, E. F., Call, L. & Osieckei, J. H. J. (1970). J. Org. Chem. 35, 3623–3628. CrossRef CAS Web of Science Google Scholar
Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1972). J. Am. Chem. Soc. 94, 7049–7059. CrossRef CAS Web of Science Google Scholar
Wang, H. M., Liu, Z. L., Zhang, D. Q., Geng, H., Shuai, Z. G. & Zhu, D. B. (2004). Inorg. Chem. 43, 4091–4098. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wang, L. Y., Zhao, B., Zhang, C. X., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2003). Inorg. Chem. 42, 5804–5806. Web of Science CSD CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design and synthesis of molecule-based magnetic materials is one of the major subjects of materials science in which the combination of metal ions and organic radicals are used to construct assembled systems (Bogani et al., 2005; Wang et al., 2004). Nitronyl nitroxide radicals (NITR), independently or in combination with metal ions, have been one of the most widely studied systems in molecular magnetism for understanding the radical-radical or metal-radical as well as for synthesizing organic ferromagnets and metal-radical magnetic materials (Fettouhi et al., 2003). However, to our knowledge so far few charge transfer complexes of nitronyl nitroxide radicals used as proton receptor have been reported. In order to better understand the behavior of proton transfer in charge transfer complexes, the synthesis and crystal structure of the title compound have been investigated. The structure of the title compound is shown in Fig. 1. The NITpPy molecule is protonated at N atom of the pyridyl ring by accepting a proton from the acid solution. The transfer of protons result in a intermolecular hydrogen bond between NITpPy and chloride.The anions and cations are connected via N—H···Cl hydrogen bonds. The nitronyl nitroxide fragment O—N—C—N—O is almost coplanar, but make a dihedral angle of 8.6 (2)° with the pyridyl ring.