organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4,5,5-Tetra­methyl-2-(4-pyridinio)imidazoline-1-oxyl-3-oxide chloride

aCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang, 453002, People's Republic of China
*Correspondence e-mail: gaozhy201@sohu.com

(Received 11 December 2008; accepted 18 December 2008; online 24 December 2008)

The title compound C12H17N3O2+·Cl consists of a discrete [NITpPyH]+ cation [NITpPy = 2-(4′-pyrid­yl)-4,4,5,5-tetra­methyl­imidazoline-1-oxyl-3-oxide] and a chloride anion. The NITpPy mol­ecule is protonated at the N atom of the pyridyl ring. The anions and cations are connected via N—H⋯Cl hydrogen bonds.

Related literature

For the design and synthesis of mol­ecule-based magnetic materials, see: Bogani et al. (2005[Bogani, L., Sangregorio, C., Sessoli, R. & &Gatteschi, D. (2005). Angew. Chem. Int. Ed. 44, 5817-5821.]); Wang et al. (2004[Wang, H. M., Liu, Z. L., Zhang, D. Q., Geng, H., Shuai, Z. G. & Zhu, D. B. (2004). Inorg. Chem. 43, 4091-4098.]). For nitronyl nitroxide radicals (NITR), see: Fettouhi et al. (2003[Fettouhi, M., Ali, B. E., Morsy, M., Golhen, S., Ouahab, L., Guennic, B. L., Saillard, J. Y., aro, N., Sutter, J. P. & Amouyal, E. (2003). Inorg. Chem. 42, 1316-1321.]). For related literature, see: Stroh et al. (1999[Stroh, C., Romero, F. M., Kyritsakas, N., Catala, L., Turek, P. & Ziessel, R. (1999). J. Mater. Chem. 9, 875-882.]); Hirel et al. (2001[Hirel, C., Vostrikova, K. E., Pe'caut, J., Ovcharenko, V. I. & Rey, P. (2001). Chem. Eur. J. 7, 2007-2013.]); Chang et al. (2005[Chang, J.-L., Wang, L.-Y. & Jiang, K. (2005). Acta Cryst. E61, m2100-m2102.]); Wang et al. (2003[Wang, L. Y., Zhao, B., Zhang, C. X., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2003). Inorg. Chem. 42, 5804-5806.]). For the synthesis of the title compound see: Ullman et al. (1970[Ullman, E. F., Call, L. & Osieckei, J. H. J. (1970). J. Org. Chem. 35, 3623-3628.], 1972[Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1972). J. Am. Chem. Soc. 94, 7049-7059.])

[Scheme 1]

Experimental

Crystal data
  • C12H17N3O2+·Cl

  • Mr = 270.74

  • Monoclinic, P 21 /c

  • a = 10.863 (14) Å

  • b = 11.927 (15) Å

  • c = 11.130 (15) Å

  • β = 102.81 (2)°

  • V = 1406 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 291 (2) K

  • 0.30 × 0.26 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.923, Tmax = 0.939

  • 7172 measured reflections

  • 2609 independent reflections

  • 2120 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.140

  • S = 1.03

  • 2609 reflections

  • 167 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯Cl1i 0.86 2.17 3.028 (3) 174
Symmetry code: (i) x+1, y+1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The design and synthesis of molecule-based magnetic materials is one of the major subjects of materials science in which the combination of metal ions and organic radicals are used to construct assembled systems (Bogani et al., 2005; Wang et al., 2004). Nitronyl nitroxide radicals (NITR), independently or in combination with metal ions, have been one of the most widely studied systems in molecular magnetism for understanding the radical-radical or metal-radical as well as for synthesizing organic ferromagnets and metal-radical magnetic materials (Fettouhi et al., 2003). However, to our knowledge so far few charge transfer complexes of nitronyl nitroxide radicals used as proton receptor have been reported. In order to better understand the behavior of proton transfer in charge transfer complexes, the synthesis and crystal structure of the title compound have been investigated. The structure of the title compound is shown in Fig. 1. The NITpPy molecule is protonated at N atom of the pyridyl ring by accepting a proton from the acid solution. The transfer of protons result in a intermolecular hydrogen bond between NITpPy and chloride.The anions and cations are connected via N—H···Cl hydrogen bonds. The nitronyl nitroxide fragment O—N—C—N—O is almost coplanar, but make a dihedral angle of 8.6 (2)° with the pyridyl ring.

Related literature top

For the design and synthesis of molecule-based magnetic materials, see: Bogani et al. (2005); Wang et al. (2004).

For nitronyl nitroxide radicals (NITR), see: Fettouhi et al. (2003). For related literature, see: Stroh et al. (1999); Hirel et al. (2001); Chang et al. (2005); Wang et al. (2003). For the synthesis of the title compound see: Ullman et al. (1970, 1972)

Experimental top

NITpPy was synthesized according to a literature procedure (Ullman et al.,1970; Ullman et al., 1972). Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from acetonitrile solution and HCl 10:1 (v/v) solution at room temperature.

Refinement top

The H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93 or 0.96 Å and N—H = 0.96 Å and Uiso(H) = 1.2Ueq(carrier) or Uiso(H) = 1.5Ueq(methyl carrier).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound with atom labeling. The thermal ellipsoids are drawn at 30% probability level.
4,4,5,5-Tetramethyl-2-(4-pyridinio)imidazoline-1-oxyl-3-oxide chloride top
Crystal data top
C12H17N3O2+·ClF(000) = 572
Mr = 270.74Dx = 1.279 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3005 reflections
a = 10.863 (14) Åθ = 2.5–27.3°
b = 11.927 (15) ŵ = 0.27 mm1
c = 11.130 (15) ÅT = 291 K
β = 102.81 (2)°BLOCK, black
V = 1406 (3) Å30.30 × 0.26 × 0.23 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2609 independent reflections
Radiation source: fine-focus sealed tube2120 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
phi and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1311
Tmin = 0.923, Tmax = 0.939k = 1314
7172 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.6783P]
where P = (Fo2 + 2Fc2)/3
2609 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H17N3O2+·ClV = 1406 (3) Å3
Mr = 270.74Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.863 (14) ŵ = 0.27 mm1
b = 11.927 (15) ÅT = 291 K
c = 11.130 (15) Å0.30 × 0.26 × 0.23 mm
β = 102.81 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2609 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2120 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.939Rint = 0.037
7172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.03Δρmax = 0.44 e Å3
2609 reflectionsΔρmin = 0.22 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05896 (6)0.43910 (4)0.31130 (6)0.0548 (2)
O10.64998 (19)1.16127 (15)0.74894 (19)0.0700 (6)
O20.78794 (19)0.86362 (13)0.53807 (17)0.0633 (5)
N10.92752 (17)1.26424 (15)0.43535 (17)0.0452 (5)
H1D0.96871.31010.39920.054*
N20.67191 (18)1.06169 (14)0.71219 (17)0.0425 (4)
N30.73993 (17)0.92068 (14)0.61433 (16)0.0395 (4)
C10.8082 (2)1.23103 (17)0.5864 (2)0.0437 (5)
H10.77001.25860.64730.052*
C20.8735 (2)1.30278 (18)0.5247 (2)0.0479 (6)
H20.87991.37840.54540.057*
C30.9190 (2)1.15584 (18)0.4007 (2)0.0437 (5)
H30.95621.13210.33750.052*
C40.8550 (2)1.07904 (17)0.45867 (19)0.0391 (5)
H40.84841.00450.43360.047*
C50.80009 (18)1.11518 (16)0.55597 (18)0.0343 (4)
C60.73824 (19)1.03513 (16)0.62469 (18)0.0348 (5)
C70.6107 (2)0.95916 (19)0.7557 (2)0.0446 (5)
C80.6900 (2)0.86274 (18)0.7158 (2)0.0479 (6)
C90.6147 (3)0.9682 (3)0.8936 (3)0.0755 (9)
H9A0.70090.96990.93870.113*
H9B0.57270.90470.91930.113*
H9C0.57291.03580.90930.113*
C100.4731 (3)0.9600 (3)0.6823 (3)0.0760 (9)
H10A0.43361.02900.69720.114*
H10B0.42850.89810.70780.114*
H10C0.47130.95330.59590.114*
C110.8094 (3)0.8328 (3)0.8176 (3)0.0673 (8)
H11A0.86300.78360.78370.101*
H11B0.78390.79620.88490.101*
H11C0.85460.90020.84650.101*
C120.6206 (4)0.7561 (2)0.6664 (3)0.0855 (11)
H12A0.55720.77310.59380.128*
H12B0.58140.72450.72790.128*
H12C0.67950.70310.64620.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0756 (5)0.0354 (3)0.0595 (4)0.0077 (2)0.0278 (3)0.0030 (2)
O10.0900 (14)0.0420 (9)0.0963 (15)0.0035 (9)0.0597 (12)0.0127 (9)
O20.0960 (14)0.0354 (8)0.0746 (12)0.0055 (8)0.0536 (11)0.0104 (8)
N10.0455 (11)0.0403 (10)0.0500 (11)0.0080 (8)0.0114 (9)0.0098 (8)
N20.0454 (11)0.0370 (9)0.0502 (11)0.0003 (7)0.0215 (9)0.0023 (7)
N30.0471 (11)0.0319 (8)0.0438 (10)0.0033 (7)0.0197 (8)0.0025 (7)
C10.0529 (14)0.0357 (11)0.0439 (12)0.0023 (9)0.0134 (10)0.0043 (9)
C20.0575 (15)0.0315 (10)0.0526 (14)0.0059 (9)0.0082 (11)0.0007 (9)
C30.0432 (13)0.0431 (11)0.0476 (12)0.0019 (9)0.0159 (10)0.0056 (9)
C40.0428 (12)0.0329 (10)0.0439 (12)0.0007 (8)0.0142 (10)0.0002 (8)
C50.0331 (11)0.0316 (9)0.0378 (11)0.0006 (8)0.0065 (8)0.0010 (8)
C60.0356 (11)0.0329 (10)0.0377 (11)0.0004 (8)0.0115 (9)0.0010 (8)
C70.0433 (13)0.0459 (12)0.0495 (13)0.0048 (9)0.0206 (10)0.0017 (9)
C80.0563 (14)0.0375 (11)0.0575 (14)0.0053 (10)0.0288 (12)0.0041 (9)
C90.102 (3)0.0758 (19)0.0605 (17)0.0035 (17)0.0428 (17)0.0043 (14)
C100.0460 (16)0.080 (2)0.102 (3)0.0054 (14)0.0163 (16)0.0114 (17)
C110.0678 (18)0.0642 (16)0.0743 (18)0.0131 (13)0.0250 (15)0.0262 (14)
C120.103 (3)0.0554 (16)0.116 (3)0.0362 (17)0.064 (2)0.0199 (17)
Geometric parameters (Å, º) top
O1—N21.295 (3)C7—C91.529 (4)
O2—N31.285 (2)C7—C101.536 (4)
N1—C21.343 (3)C7—C81.559 (3)
N1—C31.346 (3)C8—C121.518 (4)
N1—H1D0.8600C8—C111.563 (4)
N2—C61.371 (3)C9—H9A0.9600
N2—C71.522 (3)C9—H9B0.9600
N3—C61.370 (3)C9—H9C0.9600
N3—C81.523 (3)C10—H10A0.9600
C1—C21.387 (3)C10—H10B0.9600
C1—C51.421 (3)C10—H10C0.9600
C1—H10.9300C11—H11A0.9600
C2—H20.9300C11—H11B0.9600
C3—C41.392 (3)C11—H11C0.9600
C3—H30.9300C12—H12A0.9600
C4—C51.415 (3)C12—H12B0.9600
C4—H40.9300C12—H12C0.9600
C5—C61.475 (3)
C2—N1—C3121.81 (19)C10—C7—C8112.8 (2)
C2—N1—H1D119.1C12—C8—N3110.0 (2)
C3—N1—H1D119.1C12—C8—C7117.4 (2)
O1—N2—C6126.78 (18)N3—C8—C7100.76 (18)
O1—N2—C7120.83 (19)C12—C8—C11109.7 (3)
C6—N2—C7112.09 (17)N3—C8—C11105.4 (2)
O2—N3—C6126.73 (17)C7—C8—C11112.6 (2)
O2—N3—C8120.85 (18)C7—C9—H9A109.5
C6—N3—C8112.09 (17)C7—C9—H9B109.5
C2—C1—C5119.6 (2)H9A—C9—H9B109.5
C2—C1—H1120.2C7—C9—H9C109.5
C5—C1—H1120.2H9A—C9—H9C109.5
N1—C2—C1120.7 (2)H9B—C9—H9C109.5
N1—C2—H2119.6C7—C10—H10A109.5
C1—C2—H2119.6C7—C10—H10B109.5
N1—C3—C4120.6 (2)H10A—C10—H10B109.5
N1—C3—H3119.7C7—C10—H10C109.5
C4—C3—H3119.7H10A—C10—H10C109.5
C3—C4—C5119.5 (2)H10B—C10—H10C109.5
C3—C4—H4120.2C8—C11—H11A109.5
C5—C4—H4120.2C8—C11—H11B109.5
C4—C5—C1117.69 (18)H11A—C11—H11B109.5
C4—C5—C6121.17 (19)C8—C11—H11C109.5
C1—C5—C6121.13 (19)H11A—C11—H11C109.5
N3—C6—N2108.00 (17)H11B—C11—H11C109.5
N3—C6—C5125.80 (18)C8—C12—H12A109.5
N2—C6—C5126.18 (19)C8—C12—H12B109.5
N2—C7—C9110.2 (2)H12A—C12—H12B109.5
N2—C7—C10105.5 (2)C8—C12—H12C109.5
C9—C7—C10109.9 (2)H12A—C12—H12C109.5
N2—C7—C8101.19 (18)H12B—C12—H12C109.5
C9—C7—C8116.3 (2)
C3—N1—C2—C11.1 (3)C6—N2—C7—C9143.3 (2)
C5—C1—C2—N11.0 (3)O1—N2—C7—C1076.0 (3)
C2—N1—C3—C41.1 (3)C6—N2—C7—C1098.1 (2)
N1—C3—C4—C50.9 (3)O1—N2—C7—C8166.4 (2)
C3—C4—C5—C12.9 (3)C6—N2—C7—C819.6 (2)
C3—C4—C5—C6176.24 (19)O2—N3—C8—C1240.2 (3)
C2—C1—C5—C42.9 (3)C6—N3—C8—C12146.0 (2)
C2—C1—C5—C6176.2 (2)O2—N3—C8—C7164.7 (2)
O2—N3—C6—N2176.6 (2)C6—N3—C8—C721.4 (2)
C8—N3—C6—N210.0 (2)O2—N3—C8—C1178.0 (3)
O2—N3—C6—C54.9 (3)C6—N3—C8—C1195.8 (2)
C8—N3—C6—C5168.50 (19)N2—C7—C8—C12141.9 (2)
O1—N2—C6—N3179.6 (2)C9—C7—C8—C1298.7 (3)
C7—N2—C6—N36.8 (2)C10—C7—C8—C1229.7 (3)
O1—N2—C6—C51.1 (4)N2—C7—C8—N322.6 (2)
C7—N2—C6—C5174.72 (19)C9—C7—C8—N3142.0 (2)
C4—C5—C6—N38.4 (3)C10—C7—C8—N389.7 (2)
C1—C5—C6—N3170.7 (2)N2—C7—C8—C1189.3 (2)
C4—C5—C6—N2173.4 (2)C9—C7—C8—C1130.1 (3)
C1—C5—C6—N27.5 (3)C10—C7—C8—C11158.4 (2)
O1—N2—C7—C942.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl1i0.862.173.028 (3)174
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H17N3O2+·Cl
Mr270.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)10.863 (14), 11.927 (15), 11.130 (15)
β (°) 102.81 (2)
V3)1406 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.26 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.923, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
7172, 2609, 2120
Rint0.037
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.140, 1.03
No. of reflections2609
No. of parameters167
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.22

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl1i0.862.173.028 (3)174.0
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20471026) and the Natural Science Foundation of Henan Province (No. 0311021200).

References

First citationBogani, L., Sangregorio, C., Sessoli, R. & &Gatteschi, D. (2005). Angew. Chem. Int. Ed. 44, 5817–5821.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.  Google Scholar
First citationChang, J.-L., Wang, L.-Y. & Jiang, K. (2005). Acta Cryst. E61, m2100–m2102.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFettouhi, M., Ali, B. E., Morsy, M., Golhen, S., Ouahab, L., Guennic, B. L., Saillard, J. Y., aro, N., Sutter, J. P. & Amouyal, E. (2003). Inorg. Chem. 42, 1316–1321.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHirel, C., Vostrikova, K. E., Pe'caut, J., Ovcharenko, V. I. & Rey, P. (2001). Chem. Eur. J. 7, 2007–2013.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStroh, C., Romero, F. M., Kyritsakas, N., Catala, L., Turek, P. & Ziessel, R. (1999). J. Mater. Chem. 9, 875–882.  Web of Science CSD CrossRef CAS Google Scholar
First citationUllman, E. F., Call, L. & Osieckei, J. H. J. (1970). J. Org. Chem. 35, 3623–3628.  CrossRef CAS Web of Science Google Scholar
First citationUllman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1972). J. Am. Chem. Soc. 94, 7049–7059.  CrossRef CAS Web of Science Google Scholar
First citationWang, H. M., Liu, Z. L., Zhang, D. Q., Geng, H., Shuai, Z. G. & Zhu, D. B. (2004). Inorg. Chem. 43, 4091–4098.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, L. Y., Zhao, B., Zhang, C. X., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2003). Inorg. Chem. 42, 5804–5806.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds