metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-3-carb­­oxy-2-oxidobenzoato)-κ3O1,O2:O3;κ3O3:O1,O2-bis­­[aqua­(2,2′-bi­pyridine-κ2N,N′)copper(II)]

aDepartment of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, bDepartment of Chemistry, Dezhou University, Dezhou 253023, People's Republic of China, and cInstitute of Crystalline Materials, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: cuidl@sdu.edu.cn

(Received 10 November 2008; accepted 27 November 2008; online 3 December 2008)

In the centrosymmetric dinuclear complex, [Cu2(C8H4O5)2(C10H8N2)2(H2O)2], the CuII ion is coordinated by two N atoms from a bipyridine ligand, three O atoms from two 3-carb­oxy-2-oxidobenzoate dianions and the O atom of the water mol­ecule in a distorted octa­hedral geometry. The Cu—-O(H) coordination [2.931 (3) Å] is very weak. In the crystal structure, the dinuclear units are linked into a two-dimensional network parallel to (010) by O—H⋯O hydrogen bonds.

Related literature

For related structures, see: Augustin et al. (2005[Augustin, M. M., Carmen, P., Jean, S. P., Marc, S., Achim, M. & Marius, A. (2005). Cryst. Growth Des. 5, 707-711.]); Tao et al. (2002[Tao, J., Zhang, Y., Tong, M. L., Chen, X. M., Yuen, T., Lin, C. L., Huang, X. Y. & Li, J. (2002). Chem. Commun. pp. 1342-1343.]); Zheng et al. (2004[Zheng, Y. Z., Tong, M. L. & Chen, X. M. (2004). New J. Chem. 28, 1412-1415.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C8H4O5)2(C10H8N2)2(H2O)2]

  • Mr = 835.70

  • Triclinic, [P \overline 1]

  • a = 8.354 (5) Å

  • b = 10.635 (5) Å

  • c = 11.038 (5) Å

  • α = 66.812 (5)°

  • β = 68.070 (5)°

  • γ = 89.269 (5)°

  • V = 825.8 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 293 (2) K

  • 0.20 × 0.20 × 0.17 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.772, Tmax = 0.801

  • 4985 measured reflections

  • 3686 independent reflections

  • 2989 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.084

  • S = 1.17

  • 3686 reflections

  • 247 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O3 1.8976 (18)
Cu1—O2 1.9325 (17)
Cu1—N2 2.004 (2)
Cu1—N1 2.007 (2)
Cu1—O1 2.301 (2)
Cu1—O5i 2.931 (2)
Symmetry code: (i) -x+2, -y+1, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2 0.84 1.67 2.461 (2) 156
O1—H1B⋯O6ii 0.83 1.93 2.763 (3) 173
O1—H1A⋯O4iii 0.83 1.89 2.706 (3) 167
Symmetry codes: (ii) -x+1, -y+1, -z+2; (iii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

2,2-Bipyridine and benzenedicarboxylate (BDC) anion are good organic ligands for copper which can construct supramolecular structure via hydrogen bonds and π-π aromatic interactions. We present here the crystal structure of [Cu2(bpy)2(ipO)2(H2O)2], where bpy is 2,2,-bipyridine and ipOH is 2-hydroxyisophthalate.

The title compound is a centrosymmetric dinuclear complex (Fig. 1). Each CuII ion is coordinated by two N atoms (N1 and N2) from a bipyridine ligand in a bidentate chelating fashion and three O atoms (O2, O3 and O5i) of two ipO dianions and the O atom (O1) of the solvent water molecule, in a distorted octahedral geometry. The Cu1—-O5i coordination [2.931 (3) Å] is very weak. The CuII atom is located 0.209 (1) Å above the basal plane formed by atoms N1, N2, O2 and O3. The mean Cu—N(bpy) distance of 2.006 (2) Å and the bite angle N1—Cu1—N2 of 80.43 (8)° are close to the corresponding values observed in related copper-bipyridine compounds (Augustin et al., 2005).

In the crystal structure, the centrosymmetric dinuclear units are linked into a two-dimensional network parallel to the (010) (Fig. 2) by O—H···O hydrogen bonds.

In [Cu2(bpy)2(ipO)2(H2O)2], the isophthalic acid (ipa) was in situ oxidative hydroxylated before coordinating with CuII ion (Tao et al., 2002). Similar in situ oxidation has also been reported for 1,2,3-benzenetricarboxylic acid (Zheng et al., 2004).

Related literature top

For related structures, see: Augustin et al. (2005); Tao et al. (2002); Zheng et al. (2004).

Experimental top

Copper(II) chloride dihydrate (0.043 g, 0.251 mol), 2,2,-bipyridine (0.039 g, 0.249 mol), isophthalic acid (0.083 g, 0.500 mol), potassium hydroxide (0.055 g, 0.982 mol) and deionized water (18 ml) were mixed together. The mixture was sealed in a Teflon-lined stainless steel vessel (25 ml) and then heated at 453 K for 36 h under autogenous pressure and then cooled to room temperature. Light-green crystals were obtained by slow evaporation of the mother-liquor in the air for a few days.

Refinement top

O-bound H atoms were located in a difference map and then restrained to ride on their parent atoms, with a O-H distance of 0.84 (1) Å. C-bound H atoms were positioned geometrically and treated as riding, with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: (i) -x + 2, -y + 1, -z + 2.
[Figure 2] Fig. 2. The crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
Bis(µ-3-carboxy-2-oxidobenzoato)- κ3O1,O2:O3;κ3O3:O1,O2- bis[aqua(2,2'-bipyridine-κ2N,N')copper(II)] top
Crystal data top
[Cu2(C8H4O5)2(C10H8N2)2(H2O)2]Z = 1
Mr = 835.70F(000) = 426
Triclinic, P1Dx = 1.680 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.354 (5) ÅCell parameters from 3943 reflections
b = 10.635 (5) Åθ = 2.1–28.2°
c = 11.038 (5) ŵ = 1.36 mm1
α = 66.812 (5)°T = 293 K
β = 68.070 (5)°Block, green
γ = 89.269 (5)°0.20 × 0.20 × 0.17 mm
V = 825.8 (7) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
3686 independent reflections
Radiation source: fine-focus sealed tube2989 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 28.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1110
Tmin = 0.772, Tmax = 0.801k = 1114
4985 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0284P)2 + 0.2P]
where P = (Fo2 + 2Fc2)/3
3686 reflections(Δ/σ)max = 0.001
247 parametersΔρmax = 0.32 e Å3
3 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Cu2(C8H4O5)2(C10H8N2)2(H2O)2]γ = 89.269 (5)°
Mr = 835.70V = 825.8 (7) Å3
Triclinic, P1Z = 1
a = 8.354 (5) ÅMo Kα radiation
b = 10.635 (5) ŵ = 1.36 mm1
c = 11.038 (5) ÅT = 293 K
α = 66.812 (5)°0.20 × 0.20 × 0.17 mm
β = 68.070 (5)°
Data collection top
Bruker APEXII area-detector
diffractometer
3686 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2989 reflections with I > 2σ(I)
Tmin = 0.772, Tmax = 0.801Rint = 0.016
4985 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0363 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.17Δρmax = 0.32 e Å3
3686 reflectionsΔρmin = 0.25 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.02424 (4)0.40419 (3)0.79285 (3)0.03492 (11)
O10.8041 (2)0.2876 (2)0.78123 (19)0.0477 (5)
H1A0.84600.28700.70030.050 (9)*
H1B0.72200.33290.78080.073 (11)*
O20.8826 (2)0.50132 (17)0.89930 (16)0.0386 (4)
O50.7156 (2)0.47764 (18)1.14597 (18)0.0428 (4)
H50.79250.47611.07200.079 (11)*
O31.0772 (2)0.56037 (18)0.61539 (18)0.0475 (5)
O60.4835 (2)0.5775 (2)1.19418 (19)0.0472 (5)
O41.0474 (3)0.7547 (2)0.46051 (18)0.0546 (5)
C10.8480 (3)0.6833 (2)0.6998 (2)0.0328 (5)
C20.7521 (3)0.7865 (3)0.6566 (3)0.0429 (6)
H20.78390.83960.55880.052*
N21.2225 (3)0.3176 (2)0.7039 (2)0.0342 (5)
C50.6589 (3)0.6344 (2)0.9478 (2)0.0319 (5)
C80.6095 (3)0.5615 (3)1.1045 (3)0.0351 (5)
C60.8000 (3)0.6034 (2)0.8478 (2)0.0297 (5)
C141.1417 (3)0.1660 (2)0.9492 (3)0.0344 (5)
N11.0135 (3)0.2428 (2)0.9707 (2)0.0343 (5)
C131.2642 (3)0.2115 (2)0.7976 (3)0.0345 (5)
C91.3259 (3)0.3668 (3)0.5628 (3)0.0420 (6)
H91.29610.43920.49760.050*
C101.4742 (4)0.3132 (3)0.5122 (3)0.0507 (7)
H101.54340.34840.41420.061*
C40.5662 (3)0.7384 (3)0.8979 (3)0.0416 (6)
H40.47230.75710.96350.050*
C70.9998 (3)0.6649 (3)0.5847 (3)0.0371 (6)
C30.6113 (4)0.8133 (3)0.7535 (3)0.0482 (7)
H30.54770.88150.72120.058*
C121.4127 (4)0.1550 (3)0.7521 (3)0.0485 (7)
H121.44080.08230.81820.058*
C111.5186 (4)0.2078 (3)0.6077 (3)0.0536 (8)
H111.61990.17170.57550.064*
C151.1534 (4)0.0535 (3)1.0627 (3)0.0464 (7)
H151.24110.00011.04610.056*
C170.9043 (4)0.1000 (3)1.2207 (3)0.0521 (7)
H170.82210.07991.31300.063*
C180.8958 (4)0.2081 (3)1.1050 (3)0.0442 (6)
H180.80510.25931.12020.053*
C161.0337 (4)0.0218 (3)1.2004 (3)0.0537 (8)
H161.04100.05191.27830.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.04080 (18)0.03336 (18)0.02357 (16)0.01615 (13)0.01105 (12)0.00717 (12)
O10.0447 (10)0.0642 (13)0.0384 (11)0.0230 (10)0.0178 (9)0.0249 (10)
O20.0488 (10)0.0383 (10)0.0242 (8)0.0205 (8)0.0135 (7)0.0103 (7)
O50.0467 (10)0.0488 (11)0.0264 (9)0.0202 (9)0.0107 (8)0.0137 (8)
O30.0555 (11)0.0443 (11)0.0262 (9)0.0261 (9)0.0092 (8)0.0059 (8)
O60.0440 (10)0.0587 (12)0.0378 (10)0.0187 (9)0.0114 (8)0.0241 (9)
O40.0678 (13)0.0475 (11)0.0248 (9)0.0273 (10)0.0096 (9)0.0011 (8)
C10.0371 (13)0.0301 (13)0.0296 (12)0.0095 (10)0.0145 (10)0.0100 (10)
C20.0507 (16)0.0395 (15)0.0331 (14)0.0143 (12)0.0185 (12)0.0085 (12)
N20.0383 (11)0.0321 (11)0.0316 (11)0.0103 (9)0.0150 (9)0.0120 (9)
C50.0338 (12)0.0318 (13)0.0309 (12)0.0079 (10)0.0134 (10)0.0136 (10)
C80.0346 (13)0.0369 (14)0.0344 (13)0.0052 (11)0.0119 (11)0.0175 (11)
C60.0330 (12)0.0277 (12)0.0288 (12)0.0082 (10)0.0136 (10)0.0110 (10)
C140.0427 (14)0.0268 (12)0.0368 (13)0.0081 (10)0.0214 (11)0.0112 (11)
N10.0406 (11)0.0293 (11)0.0287 (10)0.0083 (9)0.0135 (9)0.0083 (9)
C130.0378 (13)0.0291 (13)0.0386 (14)0.0085 (10)0.0180 (11)0.0136 (11)
C90.0462 (15)0.0398 (15)0.0351 (14)0.0097 (12)0.0124 (12)0.0148 (12)
C100.0457 (16)0.0519 (18)0.0434 (16)0.0078 (13)0.0042 (13)0.0222 (14)
C40.0396 (14)0.0444 (15)0.0417 (15)0.0171 (12)0.0144 (12)0.0210 (12)
C70.0430 (14)0.0350 (14)0.0262 (12)0.0098 (11)0.0135 (11)0.0064 (11)
C30.0534 (16)0.0428 (16)0.0479 (16)0.0251 (13)0.0246 (14)0.0149 (13)
C120.0488 (16)0.0416 (16)0.0586 (18)0.0202 (13)0.0248 (14)0.0216 (14)
C110.0397 (15)0.0534 (18)0.062 (2)0.0163 (13)0.0105 (14)0.0286 (16)
C150.0559 (17)0.0329 (14)0.0512 (17)0.0139 (12)0.0295 (14)0.0108 (13)
C170.0705 (19)0.0396 (16)0.0288 (14)0.0033 (14)0.0141 (13)0.0027 (12)
C180.0507 (16)0.0360 (14)0.0351 (14)0.0103 (12)0.0132 (12)0.0082 (12)
C160.076 (2)0.0358 (15)0.0418 (16)0.0098 (14)0.0311 (15)0.0020 (13)
Geometric parameters (Å, º) top
Cu1—O31.8976 (18)C5—C81.477 (3)
Cu1—O21.9325 (17)C14—N11.346 (3)
Cu1—N22.004 (2)C14—C151.385 (3)
Cu1—N12.007 (2)C14—C131.475 (3)
Cu1—O12.301 (2)N1—C181.338 (3)
Cu1—O5i2.931 (2)C13—C121.380 (3)
O1—H1A0.83C9—C101.374 (4)
O1—H1B0.83C9—H90.93
O2—C61.328 (3)C10—C111.362 (4)
O5—C81.324 (3)C10—H100.93
O5—H50.84C4—C31.369 (4)
O3—C71.272 (3)C4—H40.93
O6—C81.211 (3)C3—H30.93
O4—C71.233 (3)C12—C111.376 (4)
C1—C21.387 (3)C12—H120.93
C1—C61.407 (3)C11—H110.93
C1—C71.499 (3)C15—C161.376 (4)
C2—C31.378 (4)C15—H150.93
C2—H20.93C17—C161.361 (4)
N2—C131.344 (3)C17—C181.367 (4)
N2—C91.346 (3)C17—H170.93
C5—C41.394 (3)C18—H180.93
C5—C61.422 (3)C16—H160.93
O3—Cu1—O291.52 (8)C15—C14—C13124.1 (2)
O3—Cu1—N292.25 (8)C18—N1—C14118.6 (2)
O2—Cu1—N2162.60 (8)C18—N1—Cu1126.46 (17)
O3—Cu1—N1169.99 (8)C14—N1—Cu1114.96 (15)
O2—Cu1—N193.53 (8)N2—C13—C12121.3 (2)
N2—Cu1—N180.43 (8)N2—C13—C14114.3 (2)
O3—Cu1—O196.20 (8)C12—C13—C14124.5 (2)
O2—Cu1—O198.23 (8)N2—C9—C10121.9 (3)
N2—Cu1—O198.25 (8)N2—C9—H9119.0
N1—Cu1—O191.63 (8)C10—C9—H9119.0
O3—Cu1—O5i92.34 (8)C11—C10—C9119.1 (3)
O2—Cu1—O5i79.41 (8)C11—C10—H10120.5
N2—Cu1—O5i83.47 (8)C9—C10—H10120.5
N1—Cu1—O5i80.11 (8)C3—C4—C5120.9 (2)
O1—Cu1—O5i171.22 (6)C3—C4—H4119.5
Cu1—O1—H1A105.3C5—C4—H4119.5
Cu1—O1—H1B110.7O4—C7—O3121.6 (2)
H1A—O1—H1B104.9O4—C7—C1117.8 (2)
C6—O2—Cu1124.77 (15)O3—C7—C1120.6 (2)
C8—O5—H5107.2C4—C3—C2119.3 (2)
C7—O3—Cu1130.12 (16)C4—C3—H3120.3
C2—C1—C6118.8 (2)C2—C3—H3120.3
C2—C1—C7117.6 (2)C11—C12—C13119.1 (3)
C6—C1—C7123.6 (2)C11—C12—H12120.4
C3—C2—C1122.4 (2)C13—C12—H12120.4
C3—C2—H2118.8C10—C11—C12119.7 (3)
C1—C2—H2118.8C10—C11—H11120.2
C13—N2—C9118.9 (2)C12—C11—H11120.2
C13—N2—Cu1115.19 (16)C16—C15—C14119.2 (3)
C9—N2—Cu1125.39 (17)C16—C15—H15120.4
C4—C5—C6119.7 (2)C14—C15—H15120.4
C4—C5—C8118.5 (2)C16—C17—C18119.8 (3)
C6—C5—C8121.8 (2)C16—C17—H17120.1
O6—C8—O5119.4 (2)C18—C17—H17120.1
O6—C8—C5124.2 (2)N1—C18—C17122.2 (3)
O5—C8—C5116.3 (2)N1—C18—H18118.9
O2—C6—C1123.1 (2)C17—C18—H18118.9
O2—C6—C5118.1 (2)C17—C16—C15118.9 (3)
C1—C6—C5118.8 (2)C17—C16—H16120.5
N1—C14—C15121.3 (2)C15—C16—H16120.5
N1—C14—C13114.6 (2)
O3—Cu1—O2—C627.15 (19)O2—Cu1—N1—C14158.90 (17)
N2—Cu1—O2—C6129.6 (3)N2—Cu1—N1—C144.66 (17)
N1—Cu1—O2—C6161.50 (19)O1—Cu1—N1—C14102.75 (18)
O1—Cu1—O2—C669.34 (19)C9—N2—C13—C121.7 (4)
O2—Cu1—O3—C719.2 (2)Cu1—N2—C13—C12170.8 (2)
N2—Cu1—O3—C7177.8 (2)C9—N2—C13—C14179.9 (2)
N1—Cu1—O3—C7139.5 (4)Cu1—N2—C13—C147.6 (3)
O1—Cu1—O3—C779.3 (2)N1—C14—C13—N23.7 (3)
C6—C1—C2—C30.2 (4)C15—C14—C13—N2176.0 (2)
C7—C1—C2—C3179.3 (2)N1—C14—C13—C12174.7 (2)
O3—Cu1—N2—C13166.35 (18)C15—C14—C13—C125.6 (4)
O2—Cu1—N2—C1364.0 (3)C13—N2—C9—C101.1 (4)
N1—Cu1—N2—C136.78 (17)Cu1—N2—C9—C10170.6 (2)
O1—Cu1—N2—C1397.06 (18)N2—C9—C10—C110.5 (4)
O3—Cu1—N2—C95.6 (2)C6—C5—C4—C31.4 (4)
O2—Cu1—N2—C9107.9 (3)C8—C5—C4—C3177.2 (2)
N1—Cu1—N2—C9178.7 (2)Cu1—O3—C7—O4176.2 (2)
O1—Cu1—N2—C991.0 (2)Cu1—O3—C7—C14.4 (4)
C4—C5—C8—O66.7 (4)C2—C1—C7—O410.8 (4)
C6—C5—C8—O6174.7 (2)C6—C1—C7—O4168.3 (2)
C4—C5—C8—O5170.9 (2)C2—C1—C7—O3169.8 (3)
C6—C5—C8—O57.6 (3)C6—C1—C7—O311.1 (4)
Cu1—O2—C6—C121.3 (3)C5—C4—C3—C20.9 (4)
Cu1—O2—C6—C5160.03 (16)C1—C2—C3—C41.8 (4)
C2—C1—C6—O2179.2 (2)N2—C13—C12—C110.7 (4)
C7—C1—C6—O21.8 (4)C14—C13—C12—C11178.9 (3)
C2—C1—C6—C52.2 (4)C9—C10—C11—C121.4 (5)
C7—C1—C6—C5176.8 (2)C13—C12—C11—C100.8 (4)
C4—C5—C6—O2178.3 (2)N1—C14—C15—C161.5 (4)
C8—C5—C6—O23.1 (3)C13—C14—C15—C16178.8 (2)
C4—C5—C6—C13.0 (4)C14—N1—C18—C171.7 (4)
C8—C5—C6—C1175.6 (2)Cu1—N1—C18—C17176.6 (2)
C15—C14—N1—C180.2 (4)C16—C17—C18—N11.5 (5)
C13—C14—N1—C18179.5 (2)C18—C17—C16—C150.2 (5)
C15—C14—N1—Cu1178.29 (19)C14—C15—C16—C171.6 (4)
C13—C14—N1—Cu12.0 (3)O5i—Cu1—O2—C6119.26 (19)
O3—Cu1—N1—C18139.6 (4)O5i—Cu1—O3—C798.6 (3)
O2—Cu1—N1—C1819.4 (2)O5i—Cu1—N2—C1374.20 (18)
N2—Cu1—N1—C18177.0 (2)O5i—Cu1—N2—C997.7 (2)
O1—Cu1—N1—C1878.9 (2)O5i—Cu1—N1—C1898.1 (2)
O3—Cu1—N1—C1438.7 (5)O5i—Cu1—N1—C1480.29 (18)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O20.841.672.461 (2)156
O1—H1B···O6ii0.831.932.763 (3)173
O1—H1A···O4iii0.831.892.706 (3)167
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C8H4O5)2(C10H8N2)2(H2O)2]
Mr835.70
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.354 (5), 10.635 (5), 11.038 (5)
α, β, γ (°)66.812 (5), 68.070 (5), 89.269 (5)
V3)825.8 (7)
Z1
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.20 × 0.20 × 0.17
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.772, 0.801
No. of measured, independent and
observed [I > 2σ(I)] reflections
4985, 3686, 2989
Rint0.016
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.084, 1.17
No. of reflections3686
No. of parameters247
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cu1—O31.8976 (18)Cu1—N12.007 (2)
Cu1—O21.9325 (17)Cu1—O12.301 (2)
Cu1—N22.004 (2)Cu1—O5i2.931 (2)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O20.841.672.461 (2)156
O1—H1B···O6ii0.831.932.763 (3)173
O1—H1A···O4iii0.831.892.706 (3)167
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x+2, y+1, z+1.
 

Acknowledgements

We thank Professor Dao-Feng Sun and Dr Xi-Feng Lu for the data collection and helpful discussions. This work was supported by the National Natural Science Foundation of China (grant Nos. 50672048 and 50721002).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAugustin, M. M., Carmen, P., Jean, S. P., Marc, S., Achim, M. & Marius, A. (2005). Cryst. Growth Des. 5, 707–711.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, J., Zhang, Y., Tong, M. L., Chen, X. M., Yuen, T., Lin, C. L., Huang, X. Y. & Li, J. (2002). Chem. Commun. pp. 1342–1343.  CSD CrossRef Google Scholar
First citationZheng, Y. Z., Tong, M. L. & Chen, X. M. (2004). New J. Chem. 28, 1412–1415.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds