organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Di­chloro­acetyl-3,3-di­methyl-2,6-di­phenyl­piperidin-4-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, Tamil Nadu, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 14 November 2008; accepted 27 November 2008; online 3 December 2008)

In the title compound, C21H21Cl2NO2, the piperidine ring adopts a distorted boat conformation. The two phenyl rings are approximately perpendicular to each other, with a dihedral angle of 86.12 (7)°. Mol­ecules are linked into centrosymmetric dimers by pairs of bifurcated C—H⋯O hydrogen bonds, forming R22(10) and R22(14) ring motifs, and an intramolecular C—H⋯O link also occurs.

Related literature

For general backround, see: Ponnuswamy et al. (2002[Ponnuswamy, S., Venkatraj, M., Jeyaraman, R., Suresh Kumar, M., Kumaran, D. & Ponnuswamy, M. N. (2002). Indian J. Chem. Sect. B, 41, 614-627.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21Cl2NO2

  • Mr = 390.29

  • Triclinic, [P \overline 1]

  • a = 9.1084 (2) Å

  • b = 10.8992 (3) Å

  • c = 10.9918 (3) Å

  • α = 63.879 (1)°

  • β = 85.343 (2)°

  • γ = 79.029 (1)°

  • V = 961.84 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 (2) K

  • 0.30 × 0.26 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.902, Tmax = 0.933

  • 26977 measured reflections

  • 7709 independent reflections

  • 5516 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.180

  • S = 1.03

  • 7709 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O2 0.93 2.57 3.250 (2) 130
C2—H2⋯O2i 0.98 2.50 3.4264 (18) 158
C16—H16A⋯O2i 0.96 2.54 3.413 (2) 151
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design and synthesis of conformationally anchored molecules are important due its potency and selectivity for designing drugs. The piperidin-4-ones are one such class of compounds to be investigated to understand the stereodynamics and other structural features (Ponnuswamy et al., 2002).

The sum of bond angles around atom N1 (359.6°) indicates sp2 hybridization (Beddoes et al., 1986). The N1—C7 [1.3564 (16) Å] and C7—O2 [1.2149 (17) Å] distances indicate electron delocalization. The piperidine ring adopts a distorted boat conformation, with puckering parameters (Cremer & Pople, 1975) q2 = 0.638 (1) Å, q3 = -0.067 (2) Å and ϕ2 = 253.4 (1)°, and the asymmetry parameters ΔCs(C2)= 14.4 (1)° (Nardelli, 1983). The best plane through the piperidine ring, N1/C3/C4/C6, forms dihedral angles of 89.31 (6)° and 63.47 (7)°, respectively, with the C9—C4 and C17—C22 phenyl rings. The two phenyl rings are approximately perpendicular to each other, with a dihedral angle of 86.12 (7)°.

The crystal structure is stabilized by intermolecular C—H···O hydrogen bonds. Each atoms C2 and C16 at (x, y, z) donate one proton to bifurcated acceptor O2 at (-x, 1 - y, 1 - z), forming a centrosymmetric dimer (Fig. 2) with R22(10) and R22(14) ring motifs (Bernstein et al., 1995).

Related literature top

For general backround, see: Ponnuswamy et al. (2002). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For ring puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983). For hybridization, see: Beddoes et al. (1986).

Experimental top

A mixture of 3,3-dimethyl-cis-2,6-diphenylpiperidin-4-one (1.4 g, 5 mmol), dichloroacetylchloride (1 ml, 10 mmol) and triethylamine (2 ml, 14.4 mmol) in anhydrous benzene (20 ml) was stirred at room temperature for 7 h. The benzene solution was dried over anhydrous Na2SO4 and concentrated. The pasty mass obtained was purified by crystallization from benzene-petroleum ether (333–353 K) in the ratio of 95:5.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) dimers. Atom H16A and H atoms not involved in hydrogen bonding have been omitted.
1-Dichloroacetyl-3,3-dimethyl-2,6-diphenylpiperidin-4-one top
Crystal data top
C21H21Cl2NO2Z = 2
Mr = 390.29F(000) = 408
Triclinic, P1Dx = 1.348 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1084 (2) ÅCell parameters from 7709 reflections
b = 10.8992 (3) Åθ = 2.1–34.0°
c = 10.9918 (3) ŵ = 0.35 mm1
α = 63.879 (1)°T = 293 K
β = 85.343 (2)°Block, colourless
γ = 79.029 (1)°0.30 × 0.26 × 0.20 mm
V = 961.84 (4) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
7709 independent reflections
Radiation source: fine-focus sealed tube5516 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω and ϕ scansθmax = 34.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1414
Tmin = 0.902, Tmax = 0.933k = 1617
26977 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0854P)2 + 0.3205P]
where P = (Fo2 + 2Fc2)/3
7709 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
C21H21Cl2NO2γ = 79.029 (1)°
Mr = 390.29V = 961.84 (4) Å3
Triclinic, P1Z = 2
a = 9.1084 (2) ÅMo Kα radiation
b = 10.8992 (3) ŵ = 0.35 mm1
c = 10.9918 (3) ÅT = 293 K
α = 63.879 (1)°0.30 × 0.26 × 0.20 mm
β = 85.343 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
7709 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
5516 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.933Rint = 0.021
26977 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.04Δρmax = 0.80 e Å3
7709 reflectionsΔρmin = 0.73 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.16315 (15)0.26040 (13)0.64530 (13)0.0320 (2)
H20.10590.33710.56910.038*
C30.07185 (16)0.14160 (15)0.69561 (15)0.0363 (3)
C40.12824 (17)0.02567 (15)0.83179 (16)0.0394 (3)
C50.22508 (18)0.06135 (14)0.91179 (15)0.0392 (3)
H5A0.32830.04370.88540.047*
H5B0.21690.00071.00700.047*
C60.18871 (15)0.21096 (13)0.89554 (13)0.0315 (2)
H60.09760.22040.94690.038*
C70.11626 (15)0.44855 (13)0.71233 (13)0.0330 (2)
C80.06652 (16)0.49415 (14)0.82515 (15)0.0369 (3)
H80.11940.42820.90940.044*
C90.32045 (16)0.23856 (15)0.59084 (14)0.0362 (3)
C100.4137 (2)0.11132 (19)0.62714 (19)0.0521 (4)
H100.37960.03060.68720.062*
C110.5572 (2)0.1029 (3)0.5750 (2)0.0641 (5)
H110.61860.01670.60120.077*
C120.6095 (2)0.2197 (3)0.4854 (2)0.0646 (5)
H120.70620.21360.45160.078*
C130.5178 (3)0.3460 (3)0.4460 (2)0.0683 (6)
H130.55210.42580.38420.082*
C140.3742 (2)0.35549 (19)0.49753 (19)0.0522 (4)
H140.31290.44190.46900.063*
C150.0667 (2)0.0880 (2)0.5892 (2)0.0554 (4)
H15A0.03050.16400.50500.083*
H15B0.00100.02100.61920.083*
H15C0.16540.04520.57650.083*
C160.09026 (17)0.19822 (18)0.72274 (18)0.0458 (3)
H16A0.13340.27250.64030.069*
H16B0.08950.23200.78990.069*
H16C0.14850.12520.75490.069*
C170.31594 (16)0.23865 (14)0.95568 (15)0.0377 (3)
C180.4438 (2)0.2760 (2)0.8816 (2)0.0564 (4)
H180.45250.28540.79320.068*
C190.5588 (3)0.2993 (3)0.9398 (3)0.0812 (8)
H190.64480.32390.89030.097*
C200.5464 (3)0.2865 (3)1.0703 (3)0.0855 (9)
H200.62320.30411.10800.103*
C210.4221 (3)0.2479 (3)1.1444 (3)0.0749 (7)
H210.41480.23841.23290.090*
C220.3049 (2)0.22256 (19)1.08834 (19)0.0523 (4)
H220.22060.19521.13960.063*
Cl10.09918 (6)0.66177 (5)0.78274 (6)0.06072 (15)
Cl20.12724 (6)0.49086 (7)0.84645 (7)0.07096 (18)
N10.16105 (12)0.31050 (11)0.75154 (11)0.0301 (2)
O10.09414 (17)0.08818 (13)0.87624 (15)0.0596 (4)
O20.10590 (15)0.53523 (11)0.59509 (11)0.0479 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0360 (6)0.0327 (5)0.0303 (5)0.0091 (5)0.0005 (4)0.0151 (5)
C30.0389 (7)0.0372 (6)0.0392 (6)0.0133 (5)0.0001 (5)0.0198 (5)
C40.0407 (7)0.0324 (6)0.0470 (7)0.0117 (5)0.0009 (6)0.0170 (5)
C50.0463 (7)0.0291 (6)0.0386 (7)0.0096 (5)0.0051 (6)0.0094 (5)
C60.0327 (6)0.0314 (5)0.0299 (5)0.0085 (4)0.0015 (4)0.0113 (4)
C70.0356 (6)0.0300 (5)0.0337 (6)0.0068 (5)0.0007 (5)0.0134 (5)
C80.0397 (7)0.0334 (6)0.0399 (7)0.0043 (5)0.0015 (5)0.0186 (5)
C90.0390 (7)0.0403 (6)0.0343 (6)0.0114 (5)0.0046 (5)0.0196 (5)
C100.0480 (9)0.0468 (8)0.0557 (9)0.0050 (7)0.0120 (7)0.0203 (7)
C110.0477 (10)0.0720 (13)0.0679 (12)0.0016 (9)0.0097 (9)0.0323 (10)
C120.0434 (9)0.0902 (16)0.0660 (12)0.0188 (10)0.0178 (8)0.0393 (11)
C130.0647 (12)0.0741 (13)0.0692 (13)0.0349 (11)0.0304 (10)0.0298 (11)
C140.0571 (10)0.0460 (8)0.0521 (9)0.0181 (7)0.0171 (8)0.0193 (7)
C150.0692 (12)0.0611 (10)0.0551 (10)0.0264 (9)0.0026 (8)0.0368 (9)
C160.0356 (7)0.0511 (8)0.0496 (8)0.0138 (6)0.0013 (6)0.0183 (7)
C170.0371 (6)0.0323 (6)0.0439 (7)0.0035 (5)0.0108 (5)0.0158 (5)
C180.0418 (8)0.0620 (11)0.0710 (12)0.0179 (7)0.0038 (8)0.0296 (9)
C190.0471 (11)0.0829 (16)0.128 (2)0.0202 (10)0.0174 (12)0.0520 (16)
C200.0652 (14)0.0734 (14)0.136 (2)0.0039 (11)0.0552 (16)0.0588 (16)
C210.0874 (16)0.0676 (12)0.0810 (14)0.0157 (11)0.0504 (13)0.0454 (11)
C220.0588 (10)0.0522 (9)0.0486 (9)0.0007 (7)0.0185 (7)0.0254 (7)
Cl10.0769 (3)0.0499 (2)0.0729 (3)0.0258 (2)0.0075 (2)0.0378 (2)
Cl20.0479 (3)0.0867 (4)0.1055 (5)0.0242 (2)0.0255 (3)0.0656 (4)
N10.0339 (5)0.0282 (4)0.0290 (5)0.0072 (4)0.0003 (4)0.0124 (4)
O10.0717 (9)0.0355 (5)0.0709 (8)0.0231 (6)0.0097 (7)0.0151 (6)
O20.0706 (8)0.0324 (5)0.0350 (5)0.0071 (5)0.0009 (5)0.0102 (4)
Geometric parameters (Å, º) top
C2—N11.4886 (17)C11—C121.367 (3)
C2—C91.525 (2)C11—H110.93
C2—C31.5424 (19)C12—C131.369 (3)
C2—H20.98C12—H120.93
C3—C41.521 (2)C13—C141.387 (3)
C3—C151.528 (2)C13—H130.93
C3—C161.547 (2)C14—H140.93
C4—O11.2096 (18)C15—H15A0.96
C4—C51.503 (2)C15—H15B0.96
C5—C61.5324 (19)C15—H15C0.96
C5—H5A0.97C16—H16A0.96
C5—H5B0.97C16—H16B0.96
C6—N11.4814 (16)C16—H16C0.96
C6—C171.5179 (18)C17—C181.385 (3)
C6—H60.98C17—C221.387 (2)
C7—O21.2149 (17)C18—C191.387 (3)
C7—N11.3564 (16)C18—H180.93
C7—C81.535 (2)C19—C201.375 (4)
C8—Cl11.7544 (15)C19—H190.93
C8—Cl21.7664 (16)C20—C211.361 (4)
C8—H80.98C20—H200.93
C9—C141.386 (2)C21—C221.401 (3)
C9—C101.387 (2)C21—H210.93
C10—C111.388 (3)C22—H220.93
C10—H100.93
N1—C2—C9111.62 (11)C10—C11—H11119.6
N1—C2—C3108.79 (10)C11—C12—C13119.27 (18)
C9—C2—C3119.05 (12)C11—C12—H12120.4
N1—C2—H2105.4C13—C12—H12120.4
C9—C2—H2105.4C12—C13—C14120.42 (19)
C3—C2—H2105.4C12—C13—H13119.8
C4—C3—C15112.03 (13)C14—C13—H13119.8
C4—C3—C2111.80 (11)C9—C14—C13121.16 (18)
C15—C3—C2111.26 (13)C9—C14—H14119.4
C4—C3—C16104.84 (12)C13—C14—H14119.4
C15—C3—C16108.17 (14)C3—C15—H15A109.5
C2—C3—C16108.41 (12)C3—C15—H15B109.5
O1—C4—C5121.20 (14)H15A—C15—H15B109.5
O1—C4—C3122.41 (14)C3—C15—H15C109.5
C5—C4—C3116.35 (11)H15A—C15—H15C109.5
C4—C5—C6115.68 (12)H15B—C15—H15C109.5
C4—C5—H5A108.4C3—C16—H16A109.5
C6—C5—H5A108.4C3—C16—H16B109.5
C4—C5—H5B108.4H16A—C16—H16B109.5
C6—C5—H5B108.4C3—C16—H16C109.5
H5A—C5—H5B107.4H16A—C16—H16C109.5
N1—C6—C17112.02 (11)H16B—C16—H16C109.5
N1—C6—C5110.99 (11)C18—C17—C22119.73 (16)
C17—C6—C5108.73 (11)C18—C17—C6121.13 (14)
N1—C6—H6108.3C22—C17—C6119.12 (15)
C17—C6—H6108.3C17—C18—C19119.8 (2)
C5—C6—H6108.3C17—C18—H18120.1
O2—C7—N1124.28 (13)C19—C18—H18120.1
O2—C7—C8119.02 (12)C20—C19—C18120.5 (3)
N1—C7—C8116.59 (11)C20—C19—H19119.8
C7—C8—Cl1111.99 (10)C18—C19—H19119.8
C7—C8—Cl2106.14 (10)C21—C20—C19120.06 (19)
Cl1—C8—Cl2109.75 (8)C21—C20—H20120.0
C7—C8—H8109.6C19—C20—H20120.0
Cl1—C8—H8109.6C20—C21—C22120.6 (2)
Cl2—C8—H8109.6C20—C21—H21119.7
C14—C9—C10117.55 (15)C22—C21—H21119.7
C14—C9—C2117.21 (14)C17—C22—C21119.4 (2)
C10—C9—C2125.24 (13)C17—C22—H22120.3
C9—C10—C11120.81 (18)C21—C22—H22120.3
C9—C10—H10119.6C7—N1—C6122.10 (11)
C11—C10—H10119.6C7—N1—C2116.79 (10)
C12—C11—C10120.7 (2)C6—N1—C2120.69 (10)
C12—C11—H11119.6
N1—C2—C3—C455.28 (15)C11—C12—C13—C140.8 (4)
C9—C2—C3—C474.08 (15)C10—C9—C14—C132.2 (3)
N1—C2—C3—C15178.63 (13)C2—C9—C14—C13177.88 (18)
C9—C2—C3—C1552.01 (18)C12—C13—C14—C90.7 (3)
N1—C2—C3—C1659.80 (14)N1—C6—C17—C1839.86 (19)
C9—C2—C3—C16170.84 (12)C5—C6—C17—C1883.18 (17)
C15—C3—C4—O138.8 (2)N1—C6—C17—C22141.83 (14)
C2—C3—C4—O1164.51 (16)C5—C6—C17—C2295.13 (16)
C16—C3—C4—O178.24 (19)C22—C17—C18—C191.1 (3)
C15—C3—C4—C5143.33 (15)C6—C17—C18—C19179.38 (18)
C2—C3—C4—C517.66 (18)C17—C18—C19—C200.4 (4)
C16—C3—C4—C599.59 (15)C18—C19—C20—C211.3 (4)
O1—C4—C5—C6144.98 (16)C19—C20—C21—C220.7 (4)
C3—C4—C5—C632.88 (19)C18—C17—C22—C211.6 (3)
C4—C5—C6—N143.61 (17)C6—C17—C22—C21179.98 (15)
C4—C5—C6—C17167.26 (13)C20—C21—C22—C170.7 (3)
O2—C7—C8—Cl133.06 (17)O2—C7—N1—C6172.74 (13)
N1—C7—C8—Cl1150.79 (10)C8—C7—N1—C611.34 (18)
O2—C7—C8—Cl286.69 (15)O2—C7—N1—C214.7 (2)
N1—C7—C8—Cl289.46 (13)C8—C7—N1—C2161.25 (11)
N1—C2—C9—C1478.53 (17)C17—C6—N1—C763.04 (16)
C3—C2—C9—C14153.41 (15)C5—C6—N1—C7175.21 (12)
N1—C2—C9—C10101.51 (17)C17—C6—N1—C2124.65 (13)
C3—C2—C9—C1026.6 (2)C5—C6—N1—C22.90 (16)
C14—C9—C10—C112.2 (3)C9—C2—N1—C799.87 (13)
C2—C9—C10—C11177.88 (17)C3—C2—N1—C7126.77 (12)
C9—C10—C11—C120.7 (3)C9—C2—N1—C687.43 (14)
C10—C11—C12—C130.8 (4)C3—C2—N1—C645.93 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O20.932.573.250 (2)130
C2—H2···O2i0.982.503.4264 (18)158
C16—H16A···O2i0.962.543.413 (2)151
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H21Cl2NO2
Mr390.29
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.1084 (2), 10.8992 (3), 10.9918 (3)
α, β, γ (°)63.879 (1), 85.343 (2), 79.029 (1)
V3)961.84 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.30 × 0.26 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.902, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
26977, 7709, 5516
Rint0.021
(sin θ/λ)max1)0.786
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.180, 1.04
No. of reflections7709
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.73

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O20.932.573.250 (2)130
C2—H2···O2i0.982.503.4264 (18)158
C16—H16A···O2i0.962.543.413 (2)151
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

TK thanks Dr Babu Varghese, SAIF, IIT–Madras, Chennai, India, for his help with the data collection. SP thanks the UGC, India, for financial support.

References

First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPonnuswamy, S., Venkatraj, M., Jeyaraman, R., Suresh Kumar, M., Kumaran, D. & Ponnuswamy, M. N. (2002). Indian J. Chem. Sect. B, 41, 614–627.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds