organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 2-[(2-benzyl-1-phenyl­sulfonyl-1H-indol-3-yl)methyl­ene]malonate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 18 November 2008; accepted 27 November 2008; online 3 December 2008)

In the title compound, C29H27NO6S, the sulfonyl-bound phenyl ring is almost perpendicular to the indole ring system [dihedral angle = 87.96 (6)°], while the benzyl­phenyl ring is oriented at an angle of 76.8 (7)°. An intra­molecular C—H⋯O hydrogen bond is observed. In the crystal structure, mol­ecules are linked into a zigzag C(10) chain along the b axis by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background to indole derivatives and their biological activity, see: Andreani et al. (2001[Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug Des. 16, 167-174.]); Bassindale (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]); Quetin-Leclercq et al. (1995[Quetin-Leclercq, J., Favel, A., Balansard, G., Regli, P. & Angenot, L. (1995). Planta Med. 61, 475-477.]); Singh et al. (2000[Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Folia Microbiol. 45, 173-176.]); Tsotinis et al. (1997[Tsotinis, A., Varvaresou, A., Calogeropoulou, T., Siatra-Papastaikoudi, T. & Tiligada, A. (1997). Arzneim. Forsch. 47, 307-310.]); Wang & Ng (2002[Wang, H. X. & Ng, T. B. (2002). Comput. Biochem. Physiol. C. Toxicol. Pharmacol. 132, 261-268.]).

[Scheme 1]

Experimental

Crystal data
  • C29H27NO6S

  • Mr = 517.58

  • Monoclinic, P 21 /n

  • a = 10.8280 (9) Å

  • b = 13.7762 (11) Å

  • c = 17.6832 (16) Å

  • β = 91.341 (4)°

  • V = 2637.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 (2) K

  • 0.30 × 0.25 × 0.16 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Go¨ttingen, Germany.]) Tmin = 0.952, Tmax = 0.968

  • 34168 measured reflections

  • 7583 independent reflections

  • 4683 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.142

  • S = 1.02

  • 7583 reflections

  • 334 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1 0.93 2.33 2.919 (2) 121
C7—H7⋯O5i 0.93 2.59 3.317 (2) 135
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Indole derivatives have been found to exhibit antibacterial, antifungal (Wang & Ng, 2002; Singh et al., 2000; Tsotinis et al., 1997; Quetin-Leclercq et al., 1995) and antitumour activities (Andreani et al., 2001).

The longer C—N distances [N1—C2 = 1.417 (2) Å and N1—C5 = 1.421 (2) Å] are indicative of the electronic withdrawing character of the phenylsulfonyl group. Atom S1 has a distorted tetrahedral configuration. The widening of the O1—S1—O2 angle to 120.09 (8)°, and the resultant narrowing of the N1—S1—C10 to 104.99 (8)°, from the ideal tetrahedral values, are attributed to the Thorpe- Ingold effect (Bassindale, 1984). The indole ring system is planar. The sum of bond angles around N1 (358.0°) indicates that N1 is in sp2 hybridization. The sulfonyl bound phenyl ring is almost perpendicular to the indole ring system, with a dihedral angle of 87.96 (6)°. The benzylphenyl ring is oriented at an angle of 76.69 (5)° with respect to the indole ring system. The ester groups attached to the indole ring system assume extended conformations [C3—C23—C24—C25 = 178.7 (2)°, C23—C24—C25—O4 = -176.8 (2)°, C24—C25—O4—C26 =179.4 (2)°, C25—O4—C26—C27 = 172.6 (2)°]. An intramolecular C6—H6···O1 hydrogen bond is observed.

In the crystal structure, the molecules are linked into a zigzag C(10) chain along the b axis by intermolecular C—H···O hydrogen bonds (Table 1 and Fig.2).

Related literature top

For general background to indole derivatives and their biological activity, see: Andreani et al. (2001); Bassindale (1984); Quetin-Leclercq et al. (1995); Singh et al. (2000); Tsotinis et al. (1997); Wang & Ng (2002).

Experimental top

To a solution of diethyl-2-((2-(bromomethyl)-1-(phenylsulfonyl)-1H-indol-3-yl)methylene)malonate (0.5 g, 0.96 mmol) in dry benzene (15 ml), ZnBr2 (0.43 g, 1.90 mmol) was added. The reaction mixture was then refluxed for 5 h under N2 atmosphere. It was then poured over ice-water (50 ml) containing 1 ml of concentrated HCl, extracted with chloroform (2 × 10 ml) and dried (Na2SO4). Removal of solvent followed by flash column chromatography (silica gel, 230–420 mesh, n-hexane/ethyl acetate 99:1) led to the isolation of diethyl-2-((2-benzyl-1-(phenylsulfonyl)-1H-indol-3-yl)methylene)malonate as a colourless solid. Single crystals were obtained by recrystallization from CDCl3.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(Cmethyl) and 1.2Ueq(C). The components of the anisotropic displacement parameters of C26 and C27 in the direction of the bond between them were restrained to be equal within an effective standard deviation of 0.001.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 20% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title compound. H atoms not involved in hydrogen bonding have been omitted.
Diethyl 2-[(2-benzyl-1-phenylsulfonyl-1H-indol-3-yl)methylene]malonate top
Crystal data top
C29H27NO6SF(000) = 1088
Mr = 517.58Dx = 1.304 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7583 reflections
a = 10.8280 (9) Åθ = 2.2–29.9°
b = 13.7762 (11) ŵ = 0.17 mm1
c = 17.6832 (16) ÅT = 293 K
β = 91.341 (4)°Block, colourless
V = 2637.1 (4) Å30.30 × 0.25 × 0.16 mm
Z = 4
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
7583 independent reflections
Radiation source: fine-focus sealed tube4683 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scansθmax = 29.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1512
Tmin = 0.952, Tmax = 0.968k = 1419
34168 measured reflectionsl = 2224
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.5537P]
where P = (Fo2 + 2Fc2)/3
7583 reflections(Δ/σ)max = 0.021
334 parametersΔρmax = 0.25 e Å3
1 restraintΔρmin = 0.27 e Å3
Crystal data top
C29H27NO6SV = 2637.1 (4) Å3
Mr = 517.58Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8280 (9) ŵ = 0.17 mm1
b = 13.7762 (11) ÅT = 293 K
c = 17.6832 (16) Å0.30 × 0.25 × 0.16 mm
β = 91.341 (4)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
7583 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4683 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.968Rint = 0.030
34168 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.142H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
7583 reflectionsΔρmin = 0.27 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.62844 (14)0.59182 (11)0.04158 (8)0.0397 (3)
C30.51591 (14)0.62397 (12)0.06343 (8)0.0413 (3)
C40.46420 (15)0.55336 (12)0.11419 (8)0.0429 (3)
C50.54970 (15)0.47797 (12)0.12226 (8)0.0433 (4)
C60.52568 (17)0.39664 (14)0.16628 (10)0.0546 (4)
H60.58240.34620.17070.066*
C70.41513 (19)0.39360 (15)0.20291 (10)0.0612 (5)
H70.39810.34090.23380.073*
C80.32872 (18)0.46698 (15)0.19496 (10)0.0597 (5)
H80.25460.46240.22020.072*
C90.35069 (16)0.54695 (13)0.15017 (10)0.0524 (4)
H90.29150.59540.14400.063*
C100.86326 (16)0.49835 (14)0.16366 (10)0.0524 (4)
C110.96281 (18)0.55897 (16)0.15389 (12)0.0648 (5)
H110.99270.57080.10590.078*
C121.0176 (2)0.60210 (19)0.21722 (15)0.0835 (7)
H121.08520.64300.21180.100*
C130.9725 (2)0.5846 (2)0.28747 (16)0.0986 (9)
H131.00730.61580.32940.118*
C140.8760 (3)0.5212 (3)0.29651 (13)0.1091 (10)
H140.84780.50800.34470.131*
C150.8210 (2)0.4773 (2)0.23443 (12)0.0856 (7)
H150.75600.43400.24030.103*
C160.71395 (15)0.64140 (12)0.01088 (8)0.0446 (4)
H16A0.66520.68210.04490.053*
H16B0.75340.59230.04140.053*
C170.81366 (14)0.70333 (12)0.02598 (9)0.0426 (3)
C180.93068 (15)0.70523 (13)0.00413 (10)0.0510 (4)
H180.94700.66730.04620.061*
C191.02346 (18)0.76232 (15)0.02708 (12)0.0647 (5)
H191.10140.76240.00610.078*
C201.00051 (19)0.81899 (17)0.08912 (13)0.0724 (6)
H201.06300.85700.11070.087*
C210.8847 (2)0.81906 (17)0.11901 (12)0.0741 (6)
H210.86860.85810.16050.089*
C220.79141 (16)0.76163 (14)0.08807 (10)0.0567 (5)
H220.71350.76220.10910.068*
C230.46256 (15)0.71538 (13)0.03676 (9)0.0477 (4)
H230.46940.72770.01470.057*
C240.40536 (15)0.78361 (12)0.07624 (9)0.0476 (4)
C250.36165 (19)0.87182 (15)0.03489 (12)0.0619 (5)
C260.2677 (3)1.02592 (18)0.04540 (15)0.1004 (9)
H26A0.33651.06360.02700.120*
H26B0.21221.01150.00300.120*
C270.2032 (3)1.0801 (2)0.10279 (18)0.1203 (12)
H27A0.17231.13970.08140.180*
H27B0.25911.09430.14420.180*
H27C0.13551.04210.12060.180*
C280.38732 (16)0.77720 (12)0.15970 (10)0.0502 (4)
C290.4911 (2)0.74032 (19)0.27630 (11)0.0809 (7)
H29A0.41250.71170.28920.097*
H29B0.50120.80040.30430.097*
C300.5929 (3)0.6728 (2)0.29586 (14)0.1064 (9)
H30A0.59240.65900.34910.160*
H30B0.67030.70200.28340.160*
H30C0.58210.61360.26790.160*
N10.65221 (12)0.50118 (10)0.07694 (7)0.0434 (3)
O10.76255 (13)0.34702 (9)0.10092 (8)0.0690 (4)
O20.85555 (12)0.46945 (10)0.01832 (7)0.0633 (4)
O30.3719 (2)0.88321 (13)0.03157 (9)0.1094 (7)
O40.31220 (15)0.93642 (10)0.08018 (8)0.0764 (4)
O50.29041 (13)0.78452 (13)0.18992 (8)0.0796 (4)
O60.49406 (12)0.75941 (10)0.19517 (6)0.0585 (3)
S10.78964 (4)0.44550 (3)0.08437 (2)0.04989 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0459 (8)0.0424 (8)0.0309 (7)0.0023 (7)0.0020 (6)0.0038 (6)
C30.0452 (8)0.0447 (8)0.0340 (7)0.0016 (7)0.0032 (6)0.0048 (6)
C40.0464 (8)0.0455 (9)0.0370 (8)0.0037 (7)0.0048 (6)0.0059 (7)
C50.0489 (9)0.0456 (9)0.0355 (7)0.0019 (7)0.0027 (6)0.0039 (6)
C60.0612 (11)0.0529 (10)0.0498 (10)0.0033 (8)0.0006 (8)0.0058 (8)
C70.0703 (12)0.0621 (12)0.0514 (10)0.0159 (10)0.0063 (9)0.0086 (9)
C80.0590 (11)0.0694 (13)0.0512 (10)0.0182 (10)0.0143 (8)0.0059 (9)
C90.0486 (9)0.0565 (10)0.0524 (10)0.0037 (8)0.0107 (8)0.0101 (8)
C100.0457 (9)0.0609 (11)0.0506 (9)0.0128 (8)0.0012 (7)0.0029 (8)
C110.0536 (11)0.0751 (13)0.0653 (12)0.0044 (10)0.0044 (9)0.0152 (10)
C120.0632 (13)0.0920 (17)0.0942 (18)0.0040 (12)0.0210 (13)0.0058 (14)
C130.0718 (16)0.141 (2)0.0823 (18)0.0089 (16)0.0203 (13)0.0306 (17)
C140.0797 (17)0.195 (3)0.0526 (13)0.012 (2)0.0023 (12)0.0129 (17)
C150.0687 (13)0.137 (2)0.0510 (12)0.0199 (14)0.0061 (10)0.0014 (13)
C160.0485 (9)0.0516 (9)0.0338 (7)0.0050 (7)0.0063 (6)0.0001 (7)
C170.0439 (8)0.0426 (8)0.0415 (8)0.0067 (7)0.0062 (6)0.0043 (7)
C180.0505 (9)0.0530 (10)0.0499 (9)0.0071 (8)0.0113 (7)0.0025 (8)
C190.0500 (10)0.0672 (13)0.0775 (13)0.0016 (9)0.0109 (9)0.0031 (11)
C200.0570 (11)0.0733 (14)0.0868 (15)0.0107 (10)0.0022 (10)0.0109 (12)
C210.0729 (13)0.0775 (15)0.0720 (13)0.0009 (11)0.0059 (11)0.0294 (11)
C220.0480 (9)0.0650 (12)0.0575 (10)0.0042 (8)0.0101 (8)0.0138 (9)
C230.0488 (9)0.0541 (10)0.0405 (8)0.0058 (8)0.0053 (7)0.0017 (7)
C240.0456 (8)0.0496 (9)0.0477 (9)0.0084 (7)0.0050 (7)0.0033 (7)
C250.0677 (12)0.0595 (11)0.0588 (11)0.0184 (10)0.0064 (9)0.0085 (9)
C260.132 (2)0.0731 (16)0.0966 (17)0.0495 (15)0.0213 (15)0.0311 (13)
C270.153 (3)0.0816 (18)0.128 (2)0.0647 (19)0.038 (2)0.0285 (16)
C280.0561 (10)0.0433 (9)0.0516 (9)0.0084 (8)0.0111 (8)0.0023 (7)
C290.1101 (18)0.0912 (16)0.0414 (10)0.0064 (14)0.0021 (11)0.0033 (10)
C300.152 (3)0.098 (2)0.0674 (15)0.0107 (19)0.0347 (16)0.0001 (14)
N10.0451 (7)0.0462 (7)0.0392 (7)0.0041 (6)0.0041 (5)0.0004 (6)
O10.0787 (9)0.0475 (7)0.0809 (9)0.0133 (7)0.0053 (7)0.0002 (7)
O20.0642 (8)0.0748 (9)0.0517 (7)0.0226 (7)0.0178 (6)0.0014 (6)
O30.1778 (19)0.0924 (12)0.0589 (10)0.0551 (13)0.0223 (11)0.0235 (8)
O40.0987 (11)0.0608 (9)0.0703 (9)0.0373 (8)0.0117 (8)0.0129 (7)
O50.0693 (9)0.1000 (12)0.0707 (9)0.0266 (8)0.0279 (7)0.0055 (8)
O60.0627 (8)0.0694 (8)0.0434 (6)0.0004 (6)0.0007 (6)0.0052 (6)
S10.0533 (3)0.0490 (3)0.0476 (2)0.01314 (19)0.00624 (18)0.00205 (18)
Geometric parameters (Å, º) top
C2—C31.361 (2)C18—H180.93
C2—N11.417 (2)C19—C201.374 (3)
C2—C161.492 (2)C19—H190.93
C3—C41.445 (2)C20—C211.372 (3)
C3—C231.459 (2)C20—H200.93
C4—C51.396 (2)C21—C221.386 (3)
C4—C91.400 (2)C21—H210.93
C5—C61.392 (2)C22—H220.93
C5—N11.421 (2)C23—C241.332 (2)
C6—C71.375 (3)C23—H230.93
C6—H60.93C24—C251.490 (2)
C7—C81.382 (3)C24—C281.496 (2)
C7—H70.93C25—O31.193 (2)
C8—C91.381 (3)C25—O41.319 (2)
C8—H80.93C26—C271.452 (4)
C9—H90.93C26—O41.455 (2)
C10—C151.373 (3)C26—H26A0.97
C10—C111.378 (3)C26—H26B0.97
C10—S11.7548 (18)C27—H27A0.96
C11—C121.389 (3)C27—H27B0.96
C11—H110.93C27—H27C0.96
C12—C131.367 (4)C28—O51.193 (2)
C12—H120.93C28—O61.325 (2)
C13—C141.373 (4)C29—O61.460 (2)
C13—H130.93C29—C301.477 (4)
C14—C151.377 (3)C29—H29A0.97
C14—H140.93C29—H29B0.97
C15—H150.93C30—H30A0.96
C16—C171.512 (2)C30—H30B0.96
C16—H16A0.97C30—H30C0.96
C16—H16B0.97N1—S11.6766 (13)
C17—C181.386 (2)O1—S11.4199 (14)
C17—C221.386 (2)O2—S11.4216 (13)
C18—C191.381 (3)
C3—C2—N1108.43 (13)C21—C20—C19119.47 (19)
C3—C2—C16126.91 (14)C21—C20—H20120.3
N1—C2—C16124.67 (13)C19—C20—H20120.3
C2—C3—C4108.64 (14)C20—C21—C22120.78 (19)
C2—C3—C23122.64 (15)C20—C21—H21119.6
C4—C3—C23128.71 (14)C22—C21—H21119.6
C5—C4—C9119.58 (15)C21—C22—C17120.34 (16)
C5—C4—C3107.37 (14)C21—C22—H22119.8
C9—C4—C3132.97 (16)C17—C22—H22119.8
C6—C5—C4121.58 (15)C24—C23—C3128.67 (15)
C6—C5—N1130.93 (16)C24—C23—H23115.7
C4—C5—N1107.45 (13)C3—C23—H23115.7
C7—C6—C5117.64 (18)C23—C24—C25117.68 (16)
C7—C6—H6121.2C23—C24—C28123.27 (15)
C5—C6—H6121.2C25—C24—C28119.02 (15)
C6—C7—C8121.64 (18)O3—C25—O4123.89 (18)
C6—C7—H7119.2O3—C25—C24123.70 (18)
C8—C7—H7119.2O4—C25—C24112.41 (16)
C9—C8—C7121.09 (17)C27—C26—O4107.5 (2)
C9—C8—H8119.5C27—C26—H26A110.2
C7—C8—H8119.5O4—C26—H26A110.2
C8—C9—C4118.42 (17)C27—C26—H26B110.2
C8—C9—H9120.8O4—C26—H26B110.2
C4—C9—H9120.8H26A—C26—H26B108.5
C15—C10—C11121.37 (19)C26—C27—H27A109.5
C15—C10—S1119.07 (16)C26—C27—H27B109.5
C11—C10—S1119.56 (15)H27A—C27—H27B109.5
C10—C11—C12118.6 (2)C26—C27—H27C109.5
C10—C11—H11120.7H27A—C27—H27C109.5
C12—C11—H11120.7H27B—C27—H27C109.5
C13—C12—C11120.2 (2)O5—C28—O6124.78 (17)
C13—C12—H12119.9O5—C28—C24124.99 (17)
C11—C12—H12119.9O6—C28—C24110.20 (14)
C12—C13—C14120.5 (2)O6—C29—C30108.07 (19)
C12—C13—H13119.8O6—C29—H29A110.1
C14—C13—H13119.8C30—C29—H29A110.1
C13—C14—C15120.2 (2)O6—C29—H29B110.1
C13—C14—H14119.9C30—C29—H29B110.1
C15—C14—H14119.9H29A—C29—H29B108.4
C10—C15—C14119.1 (2)C29—C30—H30A109.5
C10—C15—H15120.4C29—C30—H30B109.5
C14—C15—H15120.4H30A—C30—H30B109.5
C2—C16—C17115.95 (12)C29—C30—H30C109.5
C2—C16—H16A108.3H30A—C30—H30C109.5
C17—C16—H16A108.3H30B—C30—H30C109.5
C2—C16—H16B108.3C2—N1—C5108.11 (12)
C17—C16—H16B108.3C2—N1—S1126.11 (11)
H16A—C16—H16B107.4C5—N1—S1123.82 (11)
C18—C17—C22118.08 (16)C25—O4—C26116.75 (17)
C18—C17—C16119.68 (14)C28—O6—C29117.36 (16)
C22—C17—C16122.21 (14)O1—S1—O2120.08 (9)
C19—C18—C17121.36 (17)O1—S1—N1105.43 (8)
C19—C18—H18119.3O2—S1—N1106.92 (7)
C17—C18—H18119.3O1—S1—C10108.90 (9)
C20—C19—C18119.95 (18)O2—S1—C10109.44 (9)
C20—C19—H19120.0N1—S1—C10104.98 (7)
C18—C19—H19120.0
N1—C2—C3—C40.01 (17)C3—C2—N1—S1164.69 (11)
C16—C2—C3—C4179.63 (14)C16—C2—N1—S115.7 (2)
N1—C2—C3—C23179.53 (13)C6—C5—N1—C2177.89 (16)
C16—C2—C3—C230.1 (2)C4—C5—N1—C20.36 (16)
C2—C3—C4—C50.22 (17)C6—C5—N1—S117.2 (2)
C23—C3—C4—C5179.72 (15)C4—C5—N1—S1165.27 (11)
C2—C3—C4—C9176.51 (17)O4—C25—O3—O30.0 (3)
C23—C3—C4—C93.0 (3)C24—C25—O3—O30.0 (3)
C9—C4—C5—C60.9 (2)O3—C25—O4—C260.4 (4)
C3—C4—C5—C6178.16 (14)O3—C25—O4—C260.4 (4)
C9—C4—C5—N1176.89 (14)C24—C25—O4—C26179.4 (2)
C3—C4—C5—N10.35 (17)C27—C26—O4—C25172.6 (2)
C4—C5—C6—C71.1 (2)O5—C28—O6—C294.8 (3)
N1—C5—C6—C7178.33 (16)C24—C28—O6—C29173.44 (16)
C5—C6—C7—C81.8 (3)C30—C29—O6—C28148.87 (19)
C6—C7—C8—C90.5 (3)O1—O1—S1—O20.00 (10)
C7—C8—C9—C41.5 (3)O1—O1—S1—O20.00 (10)
C5—C4—C9—C82.2 (2)O1—O1—S1—O20.00 (10)
C3—C4—C9—C8178.61 (16)O1—O1—S1—N10.00 (9)
C15—C10—C11—C122.5 (3)O1—O1—S1—C100.00 (10)
S1—C10—C11—C12178.27 (16)O2—O2—S1—O10.00 (6)
C10—C11—C12—C130.3 (3)O2—O2—S1—O10.00 (6)
C11—C12—C13—C142.7 (4)O2—O2—S1—O10.00 (6)
C12—C13—C14—C152.3 (5)O2—O2—S1—O10.00 (6)
C11—C10—C15—C142.9 (4)O2—O2—S1—O20.00 (4)
S1—C10—C15—C14177.9 (2)O2—O2—S1—O20.00 (4)
C13—C14—C15—C100.5 (5)O2—O2—S1—N10.00 (2)
C3—C2—C16—C1795.29 (18)O2—O2—S1—N10.00 (2)
N1—C2—C16—C1785.15 (19)O2—O2—S1—C100.00 (5)
C2—C16—C17—C2240.0 (2)O2—O2—S1—C100.00 (5)
C2—C16—C17—C18142.20 (15)C2—N1—S1—O1161.77 (13)
C22—C17—C18—C190.9 (3)C5—N1—S1—O136.07 (15)
C16—C17—C18—C19178.73 (16)C2—N1—S1—O1161.77 (13)
C17—C18—C19—C200.2 (3)C5—N1—S1—O136.07 (15)
C18—C19—C20—C210.7 (3)C2—N1—S1—O232.90 (15)
C19—C20—C21—C221.0 (4)C5—N1—S1—O2164.94 (13)
C20—C21—C22—C170.3 (3)C2—N1—S1—O232.90 (15)
C18—C17—C22—C210.6 (3)C5—N1—S1—O2164.94 (13)
C16—C17—C22—C21178.43 (18)C2—N1—S1—O232.90 (15)
C2—C3—C23—C24135.86 (19)C5—N1—S1—O2164.94 (13)
C4—C3—C23—C2444.7 (3)C2—N1—S1—C1083.29 (14)
C3—C23—C24—C25178.68 (17)C5—N1—S1—C1078.86 (14)
C3—C23—C24—C280.9 (3)C15—C10—S1—O141.3 (2)
C23—C24—C25—O32.2 (3)C11—C10—S1—O1137.98 (16)
C28—C24—C25—O3179.9 (2)C15—C10—S1—O141.3 (2)
C23—C24—C25—O32.2 (3)C11—C10—S1—O1137.98 (16)
C28—C24—C25—O3179.9 (2)C15—C10—S1—O2174.34 (17)
C23—C24—C25—O4176.75 (17)C11—C10—S1—O24.93 (18)
C28—C24—C25—O41.1 (3)C15—C10—S1—O2174.34 (17)
C23—C24—C28—O5126.2 (2)C11—C10—S1—O24.93 (18)
C25—C24—C28—O556.1 (3)C15—C10—S1—O2174.34 (17)
C23—C24—C28—O652.0 (2)C11—C10—S1—O24.93 (18)
C25—C24—C28—O6125.73 (17)C15—C10—S1—N171.20 (19)
C3—C2—N1—C50.23 (16)C11—C10—S1—N1109.53 (15)
C16—C2—N1—C5179.86 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.332.919 (2)121
C7—H7···O5i0.932.593.317 (2)135
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC29H27NO6S
Mr517.58
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.8280 (9), 13.7762 (11), 17.6832 (16)
β (°) 91.341 (4)
V3)2637.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.30 × 0.25 × 0.16
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.952, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
34168, 7583, 4683
Rint0.030
(sin θ/λ)max1)0.701
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.142, 1.02
No. of reflections7583
No. of parameters334
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.27

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.332.919 (2)121
C7—H7···O5i0.932.593.317 (2)135
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

TK thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection. VD thanks UGC, India, for financial support.

References

First citationAndreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug Des. 16, 167–174.  Web of Science PubMed CAS Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationQuetin-Leclercq, J., Favel, A., Balansard, G., Regli, P. & Angenot, L. (1995). Planta Med. 61, 475–477.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Go¨ttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Folia Microbiol. 45, 173–176.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsotinis, A., Varvaresou, A., Calogeropoulou, T., Siatra-Papastaikoudi, T. & Tiligada, A. (1997). Arzneim. Forsch. 47, 307–310.  CAS Google Scholar
First citationWang, H. X. & Ng, T. B. (2002). Comput. Biochem. Physiol. C. Toxicol. Pharmacol. 132, 261–268.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds