organic compounds
1-Benzothiophene-2-carbaldehyde 4-ethylthiosemicarbazone
aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: farina@pkrisc.cc.ukm.my
The title compound, C13H15N3S2, crystallizes with two unique molecules, A and B, in the These differ principally in that the methyl group of the 4-ethylthiosemicarbazone moiety is ordered in molecule A but disordered over two positions with equal occupancies in molecule B. The benzothiophene group and the semicarbazone unit are inclined at dihedral angles of 11.78 (8)° for molecule A and 8.18 (13)° for molecule B. Weak intramolecular N—H⋯N interactions contribute to the planarity of the semicarbazone units in both molecules and each molecule adopts an E configuration with respect to the C=N bonds. In the molecules form centrosymmetric dimers as a result of N—H⋯S hydrogen bonds, augmented by C—H⋯S interactions for molecule A and C—H⋯S interactions for molecule B. Weak C—H⋯π interactions stack the dimers of both molecules into columns down the a axis.
Related literature
For background to the biological activity of thiosemicarbazones, see: de Sousa et al. (2007). For related structures, see: Chuev et al. (1992); de Lima et al. (2002); Isik et al. (2006); Kayed et al. (2008). For details of graph-set analysis of hydrogen-bonding patterns, see: Bernstein et al. (1995). For reference structural data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker 2006); cell APEX2 and SAINT (Bruker 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536808042797/ci2731sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808042797/ci2731Isup2.hkl
The title compound was prepared by heating 35 ml of an ethanolic solution of 2-acetylbenzothiophene (1.76 g, 10 mmol) and 4-ethyl-3-thiosemicarbazide (1.2 g, 10 mmol) under reflux for 2 h. Three drops of concentrated H2SO4 were added. The resulting product was isolated and recrystallized from acetonitrile to afford yellow needles of the title compound in 63.5% yield (m.p. 448–450 K).
H atoms bound to N2A, N2B, N3A and N3B were located in a difference
and refined freely with Uiso = 1.2Ueq(N). All other H-atoms were refined using a riding model with d(C-H) = 0.95 Å, Uiso = 1.2Ueq (C) for aromatic, and 0.98 Å and Uiso = 1.5Ueq (C) for CH3 H atoms. The methyl C atom of the ethyl group in molecule B is disordered over two positions, C131 and C132, each with occupancies of approximately 0.5. These occupancies were fixed at 0.5 in the final cycles.Data collection: APEX2 (Bruker 2006); cell
APEX2 and SAINT (Bruker 2006); data reduction: SAINT (Bruker 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2009).Fig. 1. The asymmetric unit of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. For clarity, only one disorder component is shown. | |
Fig. 2. Formation of dimers in the crystal structure of the title compound, through N—H···S and C—H···S hydrogen bonds, shown as dashed lines. H atoms not involved in hydrogen bonding and atoms of one of the disorder components have been omitted for clarity. | |
Fig. 3. C—H···π interactions between dimers in the title compound. Cg1 is the centroid of the S1A/C1A/C2A/C3A/C8A ring and Cg2 that of the S1B/C1B/C2B/C3B/C8B ring. H···Cg interactions are drawn as dotted lines and hydrogen bonds as dashed lines. H atoms not involved in these interactions and atoms of one of the disorder components have been omitted for clarity. |
C13H15N3S2 | Z = 4 |
Mr = 277.40 | F(000) = 584 |
Triclinic, P1 | Dx = 1.355 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.5343 (5) Å | Cell parameters from 3088 reflections |
b = 10.9943 (10) Å | θ = 4.7–52.7° |
c = 23.443 (2) Å | µ = 0.38 mm−1 |
α = 78.825 (5)° | T = 92 K |
β = 88.175 (5)° | Needle, yellow |
γ = 76.298 (5)° | 0.37 × 0.10 × 0.05 mm |
V = 1359.4 (2) Å3 |
Bruker APEXII CCD area-detector diffractometer | 5907 independent reflections |
Radiation source: fine-focus sealed tube | 4307 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
ω scans | θmax = 27.1°, θmin = 0.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −7→6 |
Tmin = 0.873, Tmax = 0.981 | k = −14→14 |
18044 measured reflections | l = −30→29 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.111 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0519P)2] where P = (Fo2 + 2Fc2)/3 |
5907 reflections | (Δ/σ)max = 0.001 |
354 parameters | Δρmax = 0.49 e Å−3 |
6 restraints | Δρmin = −0.41 e Å−3 |
C13H15N3S2 | γ = 76.298 (5)° |
Mr = 277.40 | V = 1359.4 (2) Å3 |
Triclinic, P1 | Z = 4 |
a = 5.5343 (5) Å | Mo Kα radiation |
b = 10.9943 (10) Å | µ = 0.38 mm−1 |
c = 23.443 (2) Å | T = 92 K |
α = 78.825 (5)° | 0.37 × 0.10 × 0.05 mm |
β = 88.175 (5)° |
Bruker APEXII CCD area-detector diffractometer | 5907 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 4307 reflections with I > 2σ(I) |
Tmin = 0.873, Tmax = 0.981 | Rint = 0.051 |
18044 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 6 restraints |
wR(F2) = 0.111 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.49 e Å−3 |
5907 reflections | Δρmin = −0.41 e Å−3 |
354 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1A | 0.93115 (11) | 0.05062 (5) | 0.82595 (2) | 0.01751 (15) | |
S2A | 0.13864 (11) | −0.19901 (5) | 0.99817 (3) | 0.02041 (15) | |
N1A | 0.5271 (3) | 0.01724 (17) | 0.90359 (8) | 0.0153 (4) | |
N2A | 0.3543 (3) | −0.02135 (17) | 0.94186 (8) | 0.0163 (4) | |
H2NA | 0.225 (3) | 0.0337 (19) | 0.9488 (10) | 0.028 (7)* | |
N3A | 0.5742 (4) | −0.22703 (18) | 0.94436 (8) | 0.0170 (4) | |
H3NA | 0.691 (3) | −0.195 (2) | 0.9300 (10) | 0.022 (7)* | |
C1A | 0.6844 (4) | 0.1718 (2) | 0.84181 (9) | 0.0150 (5) | |
C2A | 0.6914 (4) | 0.2885 (2) | 0.80979 (9) | 0.0182 (5) | |
H2A | 0.5730 | 0.3648 | 0.8132 | 0.022* | |
C3A | 0.8956 (4) | 0.2843 (2) | 0.77044 (9) | 0.0175 (5) | |
C4A | 0.9572 (5) | 0.3831 (2) | 0.72958 (10) | 0.0238 (6) | |
H4A | 0.8591 | 0.4678 | 0.7260 | 0.029* | |
C5A | 1.1606 (5) | 0.3570 (2) | 0.69452 (10) | 0.0253 (6) | |
H5A | 1.2001 | 0.4241 | 0.6665 | 0.030* | |
C6A | 1.3095 (5) | 0.2332 (2) | 0.69971 (10) | 0.0241 (6) | |
H6A | 1.4497 | 0.2169 | 0.6755 | 0.029* | |
C7A | 1.2534 (4) | 0.1345 (2) | 0.73997 (10) | 0.0222 (5) | |
H7A | 1.3555 | 0.0506 | 0.7440 | 0.027* | |
C8A | 1.0452 (4) | 0.1596 (2) | 0.77463 (9) | 0.0162 (5) | |
C9A | 0.4991 (4) | 0.1378 (2) | 0.88361 (9) | 0.0148 (5) | |
C10A | 0.2935 (4) | 0.2411 (2) | 0.89979 (10) | 0.0203 (5) | |
H10A | 0.2988 | 0.2372 | 0.9419 | 0.030* | |
H10B | 0.1328 | 0.2289 | 0.8887 | 0.030* | |
H10C | 0.3146 | 0.3244 | 0.8793 | 0.030* | |
C11A | 0.3697 (4) | −0.1483 (2) | 0.95961 (9) | 0.0154 (5) | |
C12A | 0.6216 (4) | −0.3666 (2) | 0.95906 (10) | 0.0194 (5) | |
H12A | 0.4719 | −0.3938 | 0.9496 | 0.023* | |
H12B | 0.6555 | −0.3954 | 1.0013 | 0.023* | |
C13A | 0.8407 (4) | −0.4280 (2) | 0.92596 (11) | 0.0253 (6) | |
H13A | 0.8674 | −0.5210 | 0.9362 | 0.038* | |
H13B | 0.9899 | −0.4029 | 0.9361 | 0.038* | |
H13C | 0.8068 | −0.4000 | 0.8841 | 0.038* | |
S1B | 0.67836 (11) | 0.71828 (5) | 0.64398 (3) | 0.01964 (15) | |
S2B | 1.51802 (11) | 0.85218 (6) | 0.44850 (3) | 0.02281 (16) | |
N1B | 1.0500 (3) | 0.82960 (18) | 0.57598 (8) | 0.0180 (4) | |
N2B | 1.2186 (4) | 0.87090 (19) | 0.53790 (8) | 0.0187 (4) | |
H2NB | 1.300 (4) | 0.9225 (19) | 0.5457 (11) | 0.028 (8)* | |
N3B | 1.1624 (4) | 0.72808 (19) | 0.48311 (9) | 0.0205 (5) | |
H3NB | 1.040 (3) | 0.721 (2) | 0.5042 (9) | 0.022 (7)* | |
C1B | 0.8201 (4) | 0.8337 (2) | 0.66072 (10) | 0.0159 (5) | |
C2B | 0.7499 (4) | 0.8626 (2) | 0.71398 (9) | 0.0163 (5) | |
H2B | 0.8087 | 0.9234 | 0.7301 | 0.020* | |
C3B | 0.5797 (4) | 0.7926 (2) | 0.74310 (9) | 0.0161 (5) | |
C4B | 0.4694 (4) | 0.7975 (2) | 0.79772 (10) | 0.0207 (5) | |
H4B | 0.5074 | 0.8524 | 0.8210 | 0.025* | |
C5B | 0.3050 (4) | 0.7218 (2) | 0.81723 (11) | 0.0241 (6) | |
H5B | 0.2285 | 0.7258 | 0.8539 | 0.029* | |
C6B | 0.2499 (4) | 0.6392 (2) | 0.78363 (11) | 0.0256 (6) | |
H6B | 0.1380 | 0.5872 | 0.7979 | 0.031* | |
C7B | 0.3576 (4) | 0.6328 (2) | 0.72976 (11) | 0.0234 (6) | |
H7B | 0.3197 | 0.5771 | 0.7069 | 0.028* | |
C8B | 0.5215 (4) | 0.7090 (2) | 0.70985 (10) | 0.0179 (5) | |
C9B | 0.9933 (4) | 0.8839 (2) | 0.62066 (9) | 0.0156 (5) | |
C10B | 1.0962 (4) | 0.9905 (2) | 0.63256 (10) | 0.0204 (5) | |
H10D | 1.0649 | 1.0607 | 0.5988 | 0.031* | |
H10E | 1.2757 | 0.9602 | 0.6400 | 0.031* | |
H10F | 1.0154 | 1.0207 | 0.6667 | 0.031* | |
C11B | 1.2880 (4) | 0.8130 (2) | 0.49148 (9) | 0.0163 (5) | |
C12B | 1.1924 (5) | 0.6655 (2) | 0.43327 (12) | 0.0370 (7) | |
H12C | 1.3697 | 0.6441 | 0.4224 | 0.044* | 0.50 |
H12D | 1.0953 | 0.7219 | 0.3995 | 0.044* | 0.50 |
H12E | 1.2155 | 0.7286 | 0.4004 | 0.044* | 0.50 |
H12F | 1.0372 | 0.6450 | 0.4271 | 0.044* | 0.50 |
C131 | 1.0968 (10) | 0.5437 (4) | 0.4516 (2) | 0.0281 (12) | 0.50 |
H13D | 0.9176 | 0.5667 | 0.4586 | 0.042* | 0.50 |
H13E | 1.1834 | 0.4928 | 0.4873 | 0.042* | 0.50 |
H13F | 1.1282 | 0.4939 | 0.4205 | 0.042* | 0.50 |
C132 | 1.3847 (8) | 0.5534 (4) | 0.4312 (2) | 0.0265 (12) | 0.50 |
H13G | 1.5473 | 0.5719 | 0.4354 | 0.040* | 0.50 |
H13H | 1.3754 | 0.5271 | 0.3939 | 0.040* | 0.50 |
H13I | 1.3629 | 0.4846 | 0.4630 | 0.040* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1A | 0.0177 (3) | 0.0162 (3) | 0.0184 (3) | −0.0042 (2) | 0.0046 (2) | −0.0031 (2) |
S2A | 0.0159 (3) | 0.0207 (3) | 0.0252 (3) | −0.0071 (2) | 0.0071 (3) | −0.0033 (2) |
N1A | 0.0121 (10) | 0.0206 (10) | 0.0135 (9) | −0.0053 (8) | 0.0028 (8) | −0.0022 (8) |
N2A | 0.0129 (10) | 0.0169 (10) | 0.0190 (10) | −0.0034 (8) | 0.0034 (8) | −0.0042 (8) |
N3A | 0.0145 (11) | 0.0188 (10) | 0.0180 (10) | −0.0069 (8) | 0.0055 (9) | −0.0011 (8) |
C1A | 0.0115 (11) | 0.0185 (11) | 0.0149 (11) | −0.0025 (9) | −0.0003 (9) | −0.0044 (9) |
C2A | 0.0169 (12) | 0.0198 (12) | 0.0175 (12) | −0.0041 (10) | 0.0010 (10) | −0.0034 (9) |
C3A | 0.0202 (13) | 0.0192 (11) | 0.0146 (11) | −0.0078 (10) | −0.0017 (10) | −0.0026 (9) |
C4A | 0.0294 (15) | 0.0218 (12) | 0.0206 (13) | −0.0090 (11) | 0.0038 (11) | −0.0015 (10) |
C5A | 0.0333 (15) | 0.0294 (14) | 0.0180 (12) | −0.0185 (12) | 0.0049 (11) | −0.0028 (10) |
C6A | 0.0246 (14) | 0.0380 (15) | 0.0162 (12) | −0.0153 (12) | 0.0069 (11) | −0.0120 (11) |
C7A | 0.0215 (13) | 0.0277 (13) | 0.0209 (13) | −0.0097 (11) | 0.0038 (11) | −0.0088 (10) |
C8A | 0.0205 (13) | 0.0189 (11) | 0.0123 (11) | −0.0095 (10) | 0.0015 (10) | −0.0050 (9) |
C9A | 0.0134 (12) | 0.0183 (11) | 0.0124 (11) | −0.0042 (9) | −0.0022 (9) | −0.0014 (9) |
C10A | 0.0183 (13) | 0.0209 (12) | 0.0220 (13) | −0.0058 (10) | 0.0054 (10) | −0.0045 (10) |
C11A | 0.0163 (12) | 0.0186 (11) | 0.0120 (11) | −0.0052 (9) | −0.0026 (9) | −0.0026 (9) |
C12A | 0.0212 (13) | 0.0154 (11) | 0.0196 (12) | −0.0039 (10) | 0.0024 (10) | 0.0005 (9) |
C13A | 0.0211 (13) | 0.0227 (13) | 0.0300 (14) | −0.0013 (10) | 0.0028 (11) | −0.0050 (11) |
S1B | 0.0211 (3) | 0.0214 (3) | 0.0196 (3) | −0.0081 (2) | 0.0061 (3) | −0.0087 (2) |
S2B | 0.0208 (3) | 0.0305 (3) | 0.0218 (3) | −0.0125 (3) | 0.0100 (3) | −0.0099 (3) |
N1B | 0.0152 (10) | 0.0216 (10) | 0.0163 (10) | −0.0047 (8) | 0.0034 (8) | −0.0017 (8) |
N2B | 0.0176 (11) | 0.0252 (11) | 0.0170 (10) | −0.0100 (9) | 0.0050 (9) | −0.0074 (9) |
N3B | 0.0204 (12) | 0.0247 (11) | 0.0203 (11) | −0.0109 (9) | 0.0112 (9) | −0.0084 (9) |
C1B | 0.0125 (12) | 0.0153 (11) | 0.0186 (12) | −0.0003 (9) | −0.0018 (10) | −0.0036 (9) |
C2B | 0.0152 (12) | 0.0193 (11) | 0.0145 (11) | −0.0038 (9) | 0.0002 (9) | −0.0039 (9) |
C3B | 0.0130 (12) | 0.0168 (11) | 0.0157 (11) | 0.0002 (9) | −0.0010 (9) | −0.0008 (9) |
C4B | 0.0204 (13) | 0.0255 (13) | 0.0145 (12) | −0.0033 (10) | 0.0027 (10) | −0.0027 (10) |
C5B | 0.0191 (13) | 0.0280 (13) | 0.0196 (12) | 0.0006 (10) | 0.0041 (11) | 0.0009 (10) |
C6B | 0.0183 (13) | 0.0212 (12) | 0.0315 (14) | −0.0020 (10) | 0.0062 (11) | 0.0048 (11) |
C7B | 0.0214 (13) | 0.0211 (12) | 0.0289 (14) | −0.0070 (10) | 0.0051 (11) | −0.0059 (10) |
C8B | 0.0143 (12) | 0.0177 (11) | 0.0183 (12) | 0.0004 (9) | 0.0035 (10) | −0.0007 (9) |
C9B | 0.0126 (12) | 0.0195 (11) | 0.0136 (11) | −0.0013 (9) | −0.0020 (9) | −0.0033 (9) |
C10B | 0.0199 (13) | 0.0264 (13) | 0.0195 (12) | −0.0118 (10) | 0.0066 (10) | −0.0083 (10) |
C11B | 0.0130 (12) | 0.0200 (12) | 0.0149 (11) | −0.0018 (9) | 0.0011 (9) | −0.0037 (9) |
C12B | 0.0458 (18) | 0.0446 (17) | 0.0388 (16) | −0.0330 (14) | 0.0295 (14) | −0.0292 (14) |
C131 | 0.038 (3) | 0.025 (3) | 0.028 (3) | −0.011 (2) | 0.005 (2) | −0.015 (2) |
C132 | 0.027 (3) | 0.029 (3) | 0.021 (3) | −0.001 (2) | 0.006 (2) | −0.004 (2) |
S1A—C8A | 1.741 (2) | N1B—N2B | 1.365 (3) |
S1A—C1A | 1.754 (2) | N2B—C11B | 1.365 (3) |
S2A—C11A | 1.683 (2) | N2B—H2NB | 0.852 (10) |
N1A—C9A | 1.291 (3) | N3B—C11B | 1.334 (3) |
N1A—N2A | 1.375 (3) | N3B—C12B | 1.453 (3) |
N2A—C11A | 1.360 (3) | N3B—H3NB | 0.835 (10) |
N2A—H2NA | 0.852 (10) | C1B—C2B | 1.369 (3) |
N3A—C11A | 1.337 (3) | C1B—C9B | 1.449 (3) |
N3A—C12A | 1.467 (3) | C2B—C3B | 1.429 (3) |
N3A—H3NA | 0.839 (10) | C2B—H2B | 0.95 |
C1A—C2A | 1.363 (3) | C3B—C4B | 1.406 (3) |
C1A—C9A | 1.459 (3) | C3B—C8B | 1.411 (3) |
C2A—C3A | 1.434 (3) | C4B—C5B | 1.384 (3) |
C2A—H2A | 0.95 | C4B—H4B | 0.95 |
C3A—C4A | 1.402 (3) | C5B—C6B | 1.400 (4) |
C3A—C8A | 1.411 (3) | C5B—H5B | 0.95 |
C4A—C5A | 1.380 (3) | C6B—C7B | 1.386 (3) |
C4A—H4A | 0.95 | C6B—H6B | 0.95 |
C5A—C6A | 1.399 (3) | C7B—C8B | 1.387 (3) |
C5A—H5A | 0.95 | C7B—H7B | 0.95 |
C6A—C7A | 1.381 (3) | C9B—C10B | 1.493 (3) |
C6A—H6A | 0.95 | C10B—H10D | 0.98 |
C7A—C8A | 1.393 (3) | C10B—H10E | 0.98 |
C7A—H7A | 0.95 | C10B—H10F | 0.98 |
C9A—C10A | 1.502 (3) | C12B—C132 | 1.432 (4) |
C10A—H10A | 0.98 | C12B—C131 | 1.535 (4) |
C10A—H10B | 0.98 | C12B—H12C | 0.99 |
C10A—H10C | 0.98 | C12B—H12D | 0.99 |
C12A—C13A | 1.511 (3) | C12B—H12E | 0.96 |
C12A—H12A | 0.99 | C12B—H12F | 0.96 |
C12A—H12B | 0.99 | C131—H12F | 1.13 |
C13A—H13A | 0.98 | C131—H13D | 0.98 |
C13A—H13B | 0.98 | C131—H13E | 0.98 |
C13A—H13C | 0.98 | C131—H13F | 0.98 |
S1B—C8B | 1.745 (2) | C132—H13G | 0.98 |
S1B—C1B | 1.750 (2) | C132—H13H | 0.98 |
S2B—C11B | 1.683 (2) | C132—H13I | 0.98 |
N1B—C9B | 1.298 (3) | ||
C8A—S1A—C1A | 91.23 (11) | C9B—C1B—S1B | 120.17 (17) |
C9A—N1A—N2A | 118.26 (18) | C1B—C2B—C3B | 113.6 (2) |
C11A—N2A—N1A | 118.93 (18) | C1B—C2B—H2B | 123.2 |
C11A—N2A—H2NA | 120.8 (18) | C3B—C2B—H2B | 123.2 |
N1A—N2A—H2NA | 119.2 (18) | C4B—C3B—C8B | 118.8 (2) |
C11A—N3A—C12A | 123.92 (19) | C4B—C3B—C2B | 129.2 (2) |
C11A—N3A—H3NA | 117.9 (17) | C8B—C3B—C2B | 111.9 (2) |
C12A—N3A—H3NA | 117.6 (17) | C5B—C4B—C3B | 119.5 (2) |
C2A—C1A—C9A | 128.8 (2) | C5B—C4B—H4B | 120.3 |
C2A—C1A—S1A | 112.27 (17) | C3B—C4B—H4B | 120.3 |
C9A—C1A—S1A | 118.84 (16) | C4B—C5B—C6B | 120.9 (2) |
C1A—C2A—C3A | 113.2 (2) | C4B—C5B—H5B | 119.6 |
C1A—C2A—H2A | 123.4 | C6B—C5B—H5B | 119.6 |
C3A—C2A—H2A | 123.4 | C7B—C6B—C5B | 120.5 (2) |
C4A—C3A—C8A | 118.6 (2) | C7B—C6B—H6B | 119.8 |
C4A—C3A—C2A | 129.4 (2) | C5B—C6B—H6B | 119.8 |
C8A—C3A—C2A | 111.9 (2) | C6B—C7B—C8B | 118.9 (2) |
C5A—C4A—C3A | 119.9 (2) | C6B—C7B—H7B | 120.6 |
C5A—C4A—H4A | 120.1 | C8B—C7B—H7B | 120.6 |
C3A—C4A—H4A | 120.1 | C7B—C8B—C3B | 121.5 (2) |
C4A—C5A—C6A | 120.9 (2) | C7B—C8B—S1B | 127.42 (19) |
C4A—C5A—H5A | 119.5 | C3B—C8B—S1B | 111.11 (17) |
C6A—C5A—H5A | 119.5 | N1B—C9B—C1B | 115.7 (2) |
C7A—C6A—C5A | 120.2 (2) | N1B—C9B—C10B | 124.4 (2) |
C7A—C6A—H6A | 119.9 | C1B—C9B—C10B | 119.94 (19) |
C5A—C6A—H6A | 119.9 | C9B—C10B—H10D | 109.5 |
C6A—C7A—C8A | 119.2 (2) | C9B—C10B—H10E | 109.5 |
C6A—C7A—H7A | 120.4 | H10D—C10B—H10E | 109.5 |
C8A—C7A—H7A | 120.4 | C9B—C10B—H10F | 109.5 |
C7A—C8A—C3A | 121.2 (2) | H10D—C10B—H10F | 109.5 |
C7A—C8A—S1A | 127.48 (18) | H10E—C10B—H10F | 109.5 |
C3A—C8A—S1A | 111.36 (17) | N3B—C11B—N2B | 116.2 (2) |
N1A—C9A—C1A | 115.43 (19) | N3B—C11B—S2B | 124.21 (18) |
N1A—C9A—C10A | 125.1 (2) | N2B—C11B—S2B | 119.61 (18) |
C1A—C9A—C10A | 119.50 (19) | C132—C12B—N3B | 122.0 (3) |
C9A—C10A—H10A | 109.5 | C132—C12B—C131 | 68.4 (3) |
C9A—C10A—H10B | 109.5 | N3B—C12B—C131 | 106.5 (3) |
H10A—C10A—H10B | 109.5 | N3B—C12B—H12C | 110.4 |
C9A—C10A—H10C | 109.5 | C131—C12B—H12C | 110.4 |
H10A—C10A—H10C | 109.5 | C132—C12B—H12D | 125.7 |
H10B—C10A—H10C | 109.5 | N3B—C12B—H12D | 110.4 |
N3A—C11A—N2A | 116.3 (2) | C131—C12B—H12D | 110.4 |
N3A—C11A—S2A | 123.46 (17) | H12C—C12B—H12D | 108.6 |
N2A—C11A—S2A | 120.25 (17) | C132—C12B—H12E | 106.6 |
N3A—C12A—C13A | 111.06 (19) | N3B—C12B—H12E | 106.2 |
N3A—C12A—H12A | 109.4 | C131—C12B—H12E | 143.4 |
C13A—C12A—H12A | 109.4 | H12C—C12B—H12E | 72.4 |
N3A—C12A—H12B | 109.4 | C132—C12B—H12F | 107.0 |
C13A—C12A—H12B | 109.4 | N3B—C12B—H12F | 107.2 |
H12A—C12A—H12B | 108.0 | C131—C12B—H12F | 47.0 |
C12A—C13A—H13A | 109.5 | H12C—C12B—H12F | 140.9 |
C12A—C13A—H13B | 109.5 | H12D—C12B—H12F | 66.4 |
H13A—C13A—H13B | 109.5 | H12E—C12B—H12F | 106.9 |
C12A—C13A—H13C | 109.5 | C12B—C131—H13D | 109.5 |
H13A—C13A—H13C | 109.5 | H12F—C131—H13D | 76.5 |
H13B—C13A—H13C | 109.5 | C12B—C131—H13E | 109.5 |
C8B—S1B—C1B | 91.60 (11) | H12F—C131—H13E | 141.6 |
C9B—N1B—N2B | 117.9 (2) | C12B—C131—H13F | 109.5 |
C11B—N2B—N1B | 119.3 (2) | H12F—C131—H13F | 103.3 |
C11B—N2B—H2NB | 118.7 (18) | C12B—C132—H13G | 109.5 |
N1B—N2B—H2NB | 121.0 (18) | C12B—C132—H13H | 109.5 |
C11B—N3B—C12B | 124.4 (2) | H13G—C132—H13H | 109.5 |
C11B—N3B—H3NB | 117.9 (17) | C12B—C132—H13I | 109.5 |
C12B—N3B—H3NB | 116.7 (17) | H13G—C132—H13I | 109.5 |
C2B—C1B—C9B | 128.1 (2) | H13H—C132—H13I | 109.5 |
C2B—C1B—S1B | 111.75 (18) | ||
C9A—N1A—N2A—C11A | 174.7 (2) | C8B—S1B—C1B—C2B | 0.07 (17) |
C8A—S1A—C1A—C2A | −0.36 (18) | C8B—S1B—C1B—C9B | 178.56 (17) |
C8A—S1A—C1A—C9A | 177.19 (18) | C9B—C1B—C2B—C3B | −178.3 (2) |
C9A—C1A—C2A—C3A | −176.5 (2) | S1B—C1B—C2B—C3B | 0.1 (2) |
S1A—C1A—C2A—C3A | 0.8 (3) | C1B—C2B—C3B—C4B | −179.9 (2) |
C1A—C2A—C3A—C4A | 177.4 (2) | C1B—C2B—C3B—C8B | −0.2 (3) |
C1A—C2A—C3A—C8A | −0.9 (3) | C8B—C3B—C4B—C5B | −0.7 (3) |
C8A—C3A—C4A—C5A | 0.1 (4) | C2B—C3B—C4B—C5B | 179.0 (2) |
C2A—C3A—C4A—C5A | −178.1 (2) | C3B—C4B—C5B—C6B | 0.9 (3) |
C3A—C4A—C5A—C6A | −1.0 (4) | C4B—C5B—C6B—C7B | −0.6 (3) |
C4A—C5A—C6A—C7A | 0.5 (4) | C5B—C6B—C7B—C8B | 0.3 (3) |
C5A—C6A—C7A—C8A | 0.9 (4) | C6B—C7B—C8B—C3B | −0.2 (3) |
C6A—C7A—C8A—C3A | −1.8 (4) | C6B—C7B—C8B—S1B | −179.72 (17) |
C6A—C7A—C8A—S1A | 177.30 (18) | C4B—C3B—C8B—C7B | 0.4 (3) |
C4A—C3A—C8A—C7A | 1.3 (3) | C2B—C3B—C8B—C7B | −179.4 (2) |
C2A—C3A—C8A—C7A | 179.8 (2) | C4B—C3B—C8B—S1B | −179.99 (16) |
C4A—C3A—C8A—S1A | −177.92 (18) | C2B—C3B—C8B—S1B | 0.2 (2) |
C2A—C3A—C8A—S1A | 0.6 (3) | C1B—S1B—C8B—C7B | 179.4 (2) |
C1A—S1A—C8A—C7A | −179.3 (2) | C1B—S1B—C8B—C3B | −0.18 (17) |
C1A—S1A—C8A—C3A | −0.14 (18) | N2B—N1B—C9B—C1B | −178.00 (18) |
N2A—N1A—C9A—C1A | −178.12 (18) | N2B—N1B—C9B—C10B | 1.4 (3) |
N2A—N1A—C9A—C10A | 1.3 (3) | C2B—C1B—C9B—N1B | 172.1 (2) |
C2A—C1A—C9A—N1A | 173.7 (2) | S1B—C1B—C9B—N1B | −6.1 (3) |
S1A—C1A—C9A—N1A | −3.4 (3) | C2B—C1B—C9B—C10B | −7.3 (3) |
C2A—C1A—C9A—C10A | −5.8 (4) | S1B—C1B—C9B—C10B | 174.51 (16) |
S1A—C1A—C9A—C10A | 177.12 (16) | C12B—N3B—C11B—N2B | 174.0 (2) |
C12A—N3A—C11A—N2A | −179.3 (2) | C12B—N3B—C11B—S2B | −5.2 (3) |
C12A—N3A—C11A—S2A | 0.3 (3) | N1B—N2B—C11B—N3B | 7.4 (3) |
N1A—N2A—C11A—N3A | 8.8 (3) | N1B—N2B—C11B—S2B | −173.36 (15) |
N1A—N2A—C11A—S2A | −170.77 (15) | C11B—N3B—C12B—C132 | 84.2 (4) |
C11A—N3A—C12A—C13A | 168.7 (2) | C11B—N3B—C12B—C131 | 158.7 (3) |
C9B—N1B—N2B—C11B | 177.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3A—H3NA···N1A | 0.84 (1) | 2.27 (2) | 2.623 (3) | 106 (2) |
N3B—H3NB···N1B | 0.83 (1) | 2.26 (2) | 2.627 (3) | 107 (2) |
C10A—H10A···S2Ai | 0.98 | 2.84 | 3.374 (2) | 115 |
N2A—H2NA···S2Ai | 0.85 (1) | 2.81 (1) | 3.638 (2) | 164 (2) |
C10B—H10D···S2Bii | 0.98 | 2.82 | 3.373 (2) | 117 |
C10A—H10B···Cg1iii | 0.98 | 2.71 | 3.577 (2) | 147 |
C10B—H10E···Cg2iv | 0.98 | 2.72 | 3.600 (2) | 150 |
Symmetry codes: (i) −x, −y, −z+2; (ii) −x+3, −y+2, −z+1; (iii) x+1, y, z; (iv) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C13H15N3S2 |
Mr | 277.40 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 92 |
a, b, c (Å) | 5.5343 (5), 10.9943 (10), 23.443 (2) |
α, β, γ (°) | 78.825 (5), 88.175 (5), 76.298 (5) |
V (Å3) | 1359.4 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.38 |
Crystal size (mm) | 0.37 × 0.10 × 0.05 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2006) |
Tmin, Tmax | 0.873, 0.981 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18044, 5907, 4307 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.641 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.111, 1.05 |
No. of reflections | 5907 |
No. of parameters | 354 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.49, −0.41 |
Computer programs: APEX2 (Bruker 2006), APEX2 and SAINT (Bruker 2006), SAINT (Bruker 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N3A—H3NA···N1A | 0.84 (1) | 2.27 (2) | 2.623 (3) | 106 (2) |
N3B—H3NB···N1B | 0.83 (1) | 2.26 (2) | 2.627 (3) | 107 (2) |
C10A—H10A···S2Ai | 0.98 | 2.84 | 3.374 (2) | 115 |
N2A—H2NA···S2Ai | 0.85 (1) | 2.81 (1) | 3.638 (2) | 164 (2) |
C10B—H10D···S2Bii | 0.98 | 2.82 | 3.373 (2) | 117 |
C10A—H10B···Cg1iii | 0.98 | 2.71 | 3.577 (2) | 147 |
C10B—H10E···Cg2iv | 0.98 | 2.72 | 3.600 (2) | 150 |
Symmetry codes: (i) −x, −y, −z+2; (ii) −x+3, −y+2, −z+1; (iii) x+1, y, z; (iv) x−1, y, z. |
Acknowledgements
The authors thank the Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for supporting this research through grants UKM-ST-01-FRGS0022–2006 and UKM-GUP-NBT-08–27-112. The authors also thank the University of Otago for purchase of the diffractometer.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chuev, I. I., Filipenko, O. S., Ryzhikov, V. G., Aldoshin, S. M. & Atovmyan, L. O. (1992). Izv. Akad. Nauk SSSR Ser. Khim. pp. 917–922. Google Scholar
Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand. Google Scholar
Işık, S., Köysal, Y., Özdemir, Z. & Bilgin, A. A. (2006). Acta Cryst. E62, o491–o493. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kayed, S. F., Farina, Y., Kassim, M. & Simpson, J. (2008). Acta Cryst. E64, o1022–o1023. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lima, G. M. de, Neto, J. L., Beraldo, H., Siebald, H. G. L. & Duncalf, D. J. (2002). J. Mol. Struct. 604, 287–291. Web of Science CSD CrossRef Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sousa, G. F. de, Manso, L. C. C., Lang, E. S., Gatto, C. C. & Mahieu, B. (2007). J. Mol. Struct. 826, 185–191. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiosemicarbazones are a class of compounds that have been investigated because of their biological activity (de Sousa et al., 2007). As a continuation of our work on thiosemicarbazone compounds as potential ligands in transition metal chemistry (Kayed et al., 2008;) we report here the structure of the title compound (Fig. 1), which crystallizes with two unique molecules, A and B, in the asymmetric unit. The two molecules are closely similar with the exception of the methyl C atom of the ethyl group which is disordered over two positions C131 and C132, with equal occupancies. The similarities of the remainder of the two molecules are demonstrated by the fact that the non-hydrogen atoms of molecules A and B overlay in Mercury (Macrae et al., 2006) with an r.m.s. deviation of 0.077 Å, when the C132 disorder component is excluded. The molecules are each reasonably planar with r.m.s. deviations of 0.137 Å and 0.128 Å from the planes through all non-hydrogen atoms of the two molecules excluding the C132 disorder component. The planarity of the N1/N2/C11/S2/N3 segments of both molecules (r.m.s. deviations 0.050 Å for molecule A and 0.037 Å for molecule B) is aided by weak intramolecular N3—H3N···N1 interactions. The benzothiophene groups and the semicarbazone groups are inclined at dihedral angles of 11.78 (8)° for molecule A and 8.18 (13)° for molecule B. Both molecules adopt an E configuration with respect to the C═N bonds, bond distances are normal (Allen et al., 1987) and comparable to those in similar structures (Chuev et al. 1992; de Lima et al. 2002; Isik et al. 2006; Kayed et al. 2008).
In the crystal structure, a centrosymmetric dimer with an R22(8) ring motif (Bernstein et al., 1995) is formed by through N2A—H2NA···S2A hydrogen bonds strengthened by additional C10A—H10A···S2A interactions for molecule A. A second dimer forms via C10B—H10D···S2B interactions for molecule B (Table 1 and Fig. 2). The dimers are further aggregated into columns down the a axis by weak C—H···π interactions involving the C10A and C10B methyl groups and the thiophene rings of adjacent molecules, Fig. 3.