organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[2-(9-Ethyl-9H-carbazol-3-yl)-6-methyl-3-quinol­yl]propan-1-ol

aDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, bDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: a_spandian@yahoo.com

(Received 19 November 2008; accepted 11 December 2008; online 17 December 2008)

In the title compound, C27H26N2O, the mean planes through the carbazole and quinoline ring systems form a dihedral angle of 67.23 (5)°. Mol­ecules are linked into cyclic centrosymmetric dimers by O—H⋯N hydrogen bonds, and C—H⋯π inter­actions with the pyridine ring of the quinoline ring system as an acceptor. The dimers are linked through C—H⋯O hydrogen bonds.

Related literature

For the biological activity and applications of carbazole derivatives, see: Itoigawa et al. (2000[Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893-897.]); Tachibana et al. (2001[Tachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589-5594.]); Ramsewak et al. (1999[Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444-447.]); Friend et al. (1999[Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Mark, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Bredas, J. L., Logdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121-127.]); Diaz et al. (2002[Diaz, J. L., Villacampa, B., Lopez-Calahorra, F. & Velasco, D. (2002). Chem. Mater. 14, 2240-2251.]); Zhang et al. (2004[Zhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895-900.]). For the biological properties of quinoline derivatives, see: Cunico et al. (2006[Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, M. A. P., Zanatta, N., de Souza, M. V. N., Freitas, I. O., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649-653.]); Hartline et al. (2005[Hartline, C. B., Harden, E. A., Williams-Aziz, S. L., Kushner, N. L., Brideau, R. J. & Kern, E. R. (2005). Antiviral Res. 65, 97-105.]). For related structures, see: Murugavel et al. (2008[Murugavel, S., Ganesh, G., Pandi, A. S., Murugan, R. & Narayanan, S. S. (2008). Acta Cryst. E64, o1681.]); Chakkaravarthi et al. (2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o1712-o1713.]).

[Scheme 1]

Experimental

Crystal data
  • C27H26N2O

  • Mr = 394.50

  • Monoclinic, P 21 /c

  • a = 13.6417 (5) Å

  • b = 9.8599 (3) Å

  • c = 16.3208 (5) Å

  • β = 109.658 (2)°

  • V = 2067.30 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.21 × 0.19 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.984, Tmax = 0.987

  • 27360 measured reflections

  • 6459 independent reflections

  • 3912 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.228

  • S = 1.02

  • 6459 reflections

  • 316 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.82 2.18 2.987 (2) 166
C17—H17⋯O1ii 0.97 (2) 2.38 (2) 3.334 (3) 171 (2)
C10—H10⋯Cg1i 0.96 (3) 2.76 (2) 3.559 (2) 141 (2)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]. Cg1 is the centroid of the N2/C15–C19 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Carbazole and its derivatives have become quite attractive compounds owing to their applications in pharmacy and molecular electronics. It has been reported that carbazole derivatives possess various biological activities, such as antitumor (Itoigawa et al., 2000), antioxidative (Tachibana et al., 2001), anti-inflammatory and antimutagenic (Ramsewak et al., 1999) activities. Carbazole derivatives also exhibit electroactivity and luminescence properties and are considered to be potential candidates for electronics such as colour displays, organic semiconductor lasers and solar cells (Friend et al., 1999). These compounds are thermally and photochemically stable, which makes them useful materials for technological applications. For instance, the carbazole ring is easily funtionalized and covalently linked to other molecules (Diaz et al., 2002). This enables its use as a convenient building block for the design and synthesis of molecular glasses, which are widely studied as components of electroactive and photoactive materials (Zhang et al., 2004). Quinoline derivatives are known to possess a variety of biological properties such as antimalarial and antiviral activity (Cunico et al., 2006; Hartline et al., 2005). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

The carbazole and quinoline ring systems are individually planar, with maximum deviations of 0.077 (1) and 0.034 (2) Å for atoms C9 and C22, respectively. The sum of the bond angles around N1 (351.7°) of the pyrrole ring is in accordance with sp2 hybridization. The N1—C1 [1.372 (3) Å] and N1—C12 [1.382 (2) Å] bond lengths are normal and are comparable with the corresponding values observed in a related structure (Chakkaravarthi et al., 2008; Murugavel et al., 2008). The mean planes through the carbazole and quinoline ring systems form a dihedral angle of 67.23 (5)°.

The molecules at (x, y, z) and (1-x, 2-y, 1-z) are linked by O1—H1···N2 hydrogen bonds into a cyclic centrosymmetric R22(16) dimer (Fig. 2). Within the dimer, C10–H10···π interactions with the pyridine ring of the quinoline ring system as an acceptor are observed. Atom C17 in the molecule (x, y, z) donate one proton to atom O1 of the molecule at (1 - x, -1/2 + y, 3/2 - z) forming a C(7) chain along the [010].

Related literature top

For the biological activities and applications of carbazole derivatives, see: Itoigawa et al. (2000); Tachibana et al. (2001); Ramsewak et al. (1999); Friend et al. (1999); Diaz et al. (2002); Zhang et al. (2004). For the biological properties quinoline derivatives, see: Cunico et al. (2006); Hartline et al. (2005). For related structures, see: Murugavel et al. (2008); Chakkaravarthi et al. (2008). Cg1 is the centroid of the N2/C15–C19 ring.

Experimental top

InCl3 (20 mol%) was added to a mixture of 3,4-dihydro-2H-pyran (1 mmol) and N-[(9-Ethyl-9H-carbazol-6-yl)methylene]-4-methylbenzenamine (1 mmol) in dry acetonitrile (10 ml) and the reaction mixture was refluxed until the completion of the reaction as indicated by TLC. The reaction mixture was then quenched with water, extracted with excess of ethyl acetate. The organic layer was washed with water and dried over anhydrous MgSO4. The solvent was evaporated in vacuo and the crude product was chromatographed on silica gel (ethylacetate-hexane, 2:8) to afford quinoline propanol. The pure compound was crystallized from ethylacetate-hexane 1:9). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a ethylacetate solution at room temperature.

Refinement top

Ring H atoms were located in a difference map and refined freely. All other H atoms were positioned geometrically (O-H = 0.82 Å and C-H = 0.96 or 0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(carrier) for methyl and hydroxy H atoms and 1.2Ueq(C) for other H atoms. The highest residual density peak is located 0.95 Å from atom H26A and the deepest hole is located 0.58 Å from atom C26.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitory radii.
[Figure 2] Fig. 2. A view of the centrosymmetric R22(16) dimer in the crystal structure of the title compound. Atoms marked with an asterisk (*) are at the symmetry position (1 - x, 2 - y, 1 - z). H atoms not involved in the hydrogen bonds (dashed lines) have been omitted.
3-[2-(9-Ethyl-9H-carbazol-3-yl)-6-methyl-3-quinolyl]propan-1-ol top
Crystal data top
C27H26N2OF(000) = 840
Mr = 394.50Dx = 1.268 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6459 reflections
a = 13.6417 (5) Åθ = 1.6–30.8°
b = 9.8599 (3) ŵ = 0.08 mm1
c = 16.3208 (5) ÅT = 293 K
β = 109.658 (2)°Block, colourless
V = 2067.30 (12) Å30.21 × 0.19 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6459 independent reflections
Radiation source: fine-focus sealed tube3912 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 30.8°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.984, Tmax = 0.987k = 1413
27360 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.228H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.1233P)2 + 0.4813P]
where P = (Fo2 + 2Fc2)/3
6459 reflections(Δ/σ)max = 0.006
316 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C27H26N2OV = 2067.30 (12) Å3
Mr = 394.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.6417 (5) ŵ = 0.08 mm1
b = 9.8599 (3) ÅT = 293 K
c = 16.3208 (5) Å0.21 × 0.19 × 0.17 mm
β = 109.658 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6459 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3912 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.987Rint = 0.033
27360 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.228H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.67 e Å3
6459 reflectionsΔρmin = 0.39 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.93457 (15)1.0043 (2)0.38448 (12)0.0457 (4)
C21.02298 (17)1.0150 (3)0.36015 (14)0.0593 (6)
C31.0529 (2)0.9032 (3)0.32531 (16)0.0702 (7)
C40.9975 (2)0.7822 (3)0.31265 (16)0.0682 (7)
C50.90952 (18)0.7707 (2)0.33655 (14)0.0545 (5)
C60.87763 (14)0.8820 (2)0.37340 (11)0.0435 (4)
C70.79523 (13)0.90547 (18)0.40869 (11)0.0392 (4)
C80.71771 (14)0.82534 (18)0.42123 (12)0.0404 (4)
C90.65428 (13)0.87827 (17)0.46436 (12)0.0393 (4)
C100.66606 (15)1.01400 (19)0.49038 (14)0.0455 (4)
C110.74047 (15)1.09668 (19)0.47741 (14)0.0471 (4)
C120.80606 (14)1.04043 (19)0.43802 (12)0.0417 (4)
C130.92173 (18)1.2385 (2)0.44090 (15)0.0562 (5)
H13A0.99501.24640.44790.067*
H13B0.91351.26460.49550.067*
C140.8608 (2)1.3349 (3)0.37111 (17)0.0729 (7)
H14A0.88501.42570.38700.109*
H14B0.78831.32910.36460.109*
H14C0.87011.31140.31710.109*
C150.57097 (13)0.79261 (17)0.47778 (11)0.0369 (4)
C160.57191 (13)0.75609 (17)0.56270 (11)0.0382 (4)
C170.49310 (14)0.67525 (18)0.56791 (11)0.0391 (4)
C180.41231 (13)0.63336 (16)0.49268 (11)0.0364 (3)
C190.41835 (13)0.67418 (17)0.41187 (11)0.0385 (4)
C200.33782 (17)0.6347 (2)0.33508 (13)0.0514 (5)
C210.25614 (17)0.5612 (2)0.33960 (15)0.0555 (5)
C220.24826 (15)0.52069 (19)0.42029 (14)0.0479 (4)
C230.32661 (15)0.55485 (18)0.49506 (13)0.0437 (4)
C240.15449 (18)0.4418 (2)0.42195 (18)0.0658 (6)
H24A0.13920.46430.47360.099*
H24B0.16860.34640.42170.099*
H24C0.09590.46430.37160.099*
C250.65808 (16)0.7989 (2)0.64488 (13)0.0507 (5)
H25A0.72220.80400.63170.061*
H25B0.66690.72740.68760.061*
C260.6451 (2)0.9318 (3)0.68702 (16)0.0670 (6)
H26A0.70730.94790.73680.080*
H26B0.63981.00460.64570.080*
C270.5535 (2)0.9385 (3)0.71641 (16)0.0662 (6)
H27A0.49040.92120.66770.079*
H27B0.55940.86980.76040.079*
N10.89013 (12)1.09912 (16)0.42253 (11)0.0472 (4)
N20.49803 (12)0.75259 (15)0.40562 (9)0.0403 (3)
O10.5485 (2)1.0718 (2)0.75206 (12)0.0920 (7)
H10.54301.12940.71450.138*
H50.8714 (18)0.687 (3)0.3262 (15)0.054 (6)*
H80.7093 (18)0.729 (2)0.4023 (15)0.055 (6)*
H110.7485 (17)1.189 (3)0.4958 (14)0.054 (6)*
H230.3214 (17)0.525 (2)0.5550 (15)0.053 (6)*
H21.061 (2)1.098 (3)0.3724 (15)0.058 (7)*
H41.025 (2)0.702 (3)0.2924 (18)0.077 (8)*
H100.621 (2)1.054 (2)0.5176 (15)0.062 (7)*
H170.4891 (16)0.649 (2)0.6239 (14)0.046 (5)*
H31.116 (2)0.910 (3)0.309 (2)0.090 (9)*
H200.342 (2)0.653 (3)0.2771 (19)0.079 (8)*
H210.196 (2)0.546 (3)0.2859 (17)0.073 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0384 (9)0.0591 (11)0.0381 (9)0.0007 (8)0.0111 (7)0.0064 (8)
C20.0450 (11)0.0906 (17)0.0447 (10)0.0091 (11)0.0181 (9)0.0069 (11)
C30.0557 (14)0.110 (2)0.0526 (12)0.0038 (13)0.0286 (11)0.0064 (13)
C40.0649 (15)0.0946 (19)0.0524 (12)0.0144 (14)0.0292 (11)0.0067 (12)
C50.0568 (12)0.0616 (13)0.0482 (11)0.0054 (10)0.0218 (9)0.0026 (9)
C60.0396 (9)0.0535 (10)0.0372 (8)0.0047 (7)0.0125 (7)0.0046 (7)
C70.0368 (9)0.0408 (9)0.0395 (8)0.0040 (6)0.0122 (7)0.0028 (7)
C80.0416 (9)0.0356 (8)0.0447 (9)0.0021 (7)0.0156 (7)0.0006 (7)
C90.0360 (8)0.0386 (8)0.0444 (9)0.0018 (6)0.0149 (7)0.0024 (7)
C100.0396 (10)0.0417 (9)0.0580 (11)0.0036 (7)0.0204 (8)0.0029 (8)
C110.0442 (10)0.0349 (9)0.0627 (12)0.0002 (7)0.0188 (9)0.0043 (8)
C120.0366 (8)0.0406 (9)0.0456 (9)0.0004 (7)0.0107 (7)0.0053 (7)
C130.0564 (12)0.0512 (11)0.0601 (12)0.0159 (9)0.0183 (10)0.0019 (9)
C140.0953 (19)0.0568 (14)0.0723 (16)0.0008 (13)0.0358 (14)0.0139 (11)
C150.0368 (8)0.0348 (8)0.0409 (8)0.0033 (6)0.0157 (7)0.0005 (6)
C160.0386 (8)0.0368 (8)0.0386 (8)0.0049 (6)0.0122 (7)0.0020 (6)
C170.0455 (9)0.0383 (8)0.0358 (8)0.0037 (7)0.0166 (7)0.0006 (6)
C180.0391 (8)0.0316 (7)0.0407 (8)0.0025 (6)0.0165 (7)0.0008 (6)
C190.0398 (9)0.0379 (8)0.0388 (8)0.0007 (7)0.0146 (7)0.0013 (6)
C200.0533 (11)0.0585 (12)0.0385 (9)0.0072 (9)0.0101 (8)0.0015 (8)
C210.0496 (11)0.0551 (12)0.0531 (11)0.0079 (9)0.0059 (9)0.0055 (9)
C220.0431 (10)0.0370 (9)0.0636 (12)0.0020 (7)0.0178 (9)0.0029 (8)
C230.0456 (10)0.0360 (8)0.0536 (10)0.0009 (7)0.0222 (8)0.0022 (7)
C240.0532 (13)0.0551 (13)0.0873 (17)0.0124 (10)0.0214 (12)0.0005 (12)
C250.0516 (11)0.0511 (11)0.0438 (10)0.0017 (8)0.0086 (8)0.0059 (8)
C260.0769 (16)0.0637 (14)0.0556 (13)0.0054 (12)0.0160 (11)0.0107 (10)
C270.0820 (17)0.0611 (14)0.0537 (12)0.0008 (12)0.0203 (12)0.0013 (10)
N10.0416 (8)0.0478 (9)0.0525 (9)0.0064 (6)0.0163 (7)0.0038 (7)
N20.0428 (8)0.0422 (8)0.0375 (7)0.0012 (6)0.0155 (6)0.0008 (6)
O10.161 (2)0.0715 (12)0.0560 (10)0.0272 (13)0.0528 (12)0.0011 (8)
Geometric parameters (Å, º) top
C1—N11.372 (3)C15—N21.321 (2)
C1—C21.395 (3)C15—C161.428 (2)
C1—C61.413 (3)C16—C171.364 (3)
C2—C31.364 (4)C16—C251.516 (2)
C2—H20.95 (2)C17—C181.408 (2)
C3—C41.390 (4)C17—H170.97 (2)
C3—H30.99 (3)C18—C191.408 (2)
C4—C51.385 (4)C18—C231.414 (2)
C4—H40.98 (3)C19—N21.365 (2)
C5—C61.390 (3)C19—C201.415 (3)
C5—H50.96 (2)C20—C211.352 (3)
C6—C71.444 (3)C20—H200.99 (3)
C7—C81.389 (3)C21—C221.414 (3)
C7—C121.405 (3)C21—H210.99 (3)
C8—C91.388 (3)C22—C231.366 (3)
C8—H81.00 (2)C22—C241.505 (3)
C9—C101.397 (3)C23—H231.05 (2)
C9—C151.490 (2)C24—H24A0.96
C10—C111.373 (3)C24—H24B0.96
C10—H100.95 (3)C24—H24C0.96
C11—C121.382 (3)C25—C261.518 (3)
C11—H110.96 (2)C25—H25A0.97
C12—N11.382 (2)C25—H25B0.97
C13—N11.442 (3)C26—C271.483 (4)
C13—C141.501 (3)C26—H26A0.97
C13—H13A0.97C26—H26B0.97
C13—H13B0.97C27—O11.448 (3)
C14—H14A0.96C27—H27A0.97
C14—H14B0.96C27—H27B0.97
C14—H14C0.96O1—H10.82
N1—C1—C2129.3 (2)C17—C16—C25120.02 (17)
N1—C1—C6109.41 (17)C15—C16—C25122.67 (17)
C2—C1—C6121.3 (2)C16—C17—C18121.29 (16)
C3—C2—C1117.8 (2)C16—C17—H17120.7 (13)
C3—C2—H2123.9 (15)C18—C17—H17117.9 (13)
C1—C2—H2118.2 (15)C19—C18—C17117.25 (16)
C2—C3—C4122.1 (2)C19—C18—C23119.47 (16)
C2—C3—H3118.3 (19)C17—C18—C23123.28 (16)
C4—C3—H3119.6 (19)N2—C19—C18122.06 (15)
C5—C4—C3120.5 (2)N2—C19—C20119.33 (16)
C5—C4—H4119.5 (17)C18—C19—C20118.59 (17)
C3—C4—H4119.7 (17)C21—C20—C19120.50 (19)
C4—C5—C6118.9 (2)C21—C20—H20118.1 (16)
C4—C5—H5119.3 (14)C19—C20—H20121.2 (16)
C6—C5—H5121.7 (14)C20—C21—C22121.63 (19)
C5—C6—C1119.39 (19)C20—C21—H21119.3 (16)
C5—C6—C7134.31 (19)C22—C21—H21118.6 (16)
C1—C6—C7106.28 (17)C23—C22—C21118.70 (18)
C8—C7—C12119.11 (17)C23—C22—C24121.7 (2)
C8—C7—C6134.49 (17)C21—C22—C24119.60 (19)
C12—C7—C6106.33 (16)C22—C23—C18121.07 (18)
C9—C8—C7119.75 (16)C22—C23—H23119.2 (13)
C9—C8—H8119.4 (14)C18—C23—H23119.7 (13)
C7—C8—H8120.8 (14)C22—C24—H24A109.5
C8—C9—C10119.14 (17)C22—C24—H24B109.5
C8—C9—C15119.86 (15)H24A—C24—H24B109.5
C10—C9—C15120.91 (16)C22—C24—H24C109.5
C11—C10—C9122.51 (18)H24A—C24—H24C109.5
C11—C10—H10116.8 (15)H24B—C24—H24C109.5
C9—C10—H10120.7 (15)C16—C25—C26117.85 (18)
C10—C11—C12117.50 (17)C16—C25—H25A107.8
C10—C11—H11122.1 (14)C26—C25—H25A107.8
C12—C11—H11120.4 (14)C16—C25—H25B107.8
C11—C12—N1128.64 (18)C26—C25—H25B107.8
C11—C12—C7121.90 (17)H25A—C25—H25B107.2
N1—C12—C7109.45 (17)C27—C26—C25115.1 (2)
N1—C13—C14113.27 (19)C27—C26—H26A108.5
N1—C13—H13A108.9C25—C26—H26A108.5
C14—C13—H13A108.9C27—C26—H26B108.5
N1—C13—H13B108.9C25—C26—H26B108.5
C14—C13—H13B108.9H26A—C26—H26B107.5
H13A—C13—H13B107.7O1—C27—C26109.2 (2)
C13—C14—H14A109.5O1—C27—H27A109.8
C13—C14—H14B109.5C26—C27—H27A109.8
H14A—C14—H14B109.5O1—C27—H27B109.8
C13—C14—H14C109.5C26—C27—H27B109.8
H14A—C14—H14C109.5H27A—C27—H27B108.3
H14B—C14—H14C109.5C1—N1—C12108.52 (16)
N2—C15—C16123.25 (16)C1—N1—C13126.70 (18)
N2—C15—C9114.92 (15)C12—N1—C13124.74 (18)
C16—C15—C9121.83 (15)C15—N2—C19118.85 (15)
C17—C16—C15117.26 (15)C27—O1—H1109.5
N1—C1—C2—C3178.2 (2)C15—C16—C17—C182.1 (2)
C6—C1—C2—C30.1 (3)C25—C16—C17—C18179.67 (16)
C1—C2—C3—C41.0 (4)C16—C17—C18—C192.3 (3)
C2—C3—C4—C50.9 (4)C16—C17—C18—C23177.00 (16)
C3—C4—C5—C60.0 (4)C17—C18—C19—N20.8 (3)
C4—C5—C6—C10.8 (3)C23—C18—C19—N2178.51 (16)
C4—C5—C6—C7176.9 (2)C17—C18—C19—C20179.44 (17)
N1—C1—C6—C5179.39 (17)C23—C18—C19—C200.1 (3)
C2—C1—C6—C50.8 (3)N2—C19—C20—C21177.61 (19)
N1—C1—C6—C71.1 (2)C18—C19—C20—C211.0 (3)
C2—C1—C6—C7177.49 (17)C19—C20—C21—C220.3 (3)
C5—C6—C7—C81.8 (4)C20—C21—C22—C231.4 (3)
C1—C6—C7—C8176.15 (19)C20—C21—C22—C24178.5 (2)
C5—C6—C7—C12178.6 (2)C21—C22—C23—C182.3 (3)
C1—C6—C7—C120.70 (19)C24—C22—C23—C18177.59 (18)
C12—C7—C8—C91.7 (3)C19—C18—C23—C221.6 (3)
C6—C7—C8—C9174.82 (18)C17—C18—C23—C22177.69 (17)
C7—C8—C9—C103.4 (3)C17—C16—C25—C2692.1 (2)
C7—C8—C9—C15179.91 (15)C15—C16—C25—C2690.4 (2)
C8—C9—C10—C112.1 (3)C16—C25—C26—C2761.1 (3)
C15—C9—C10—C11178.59 (18)C25—C26—C27—O1177.84 (19)
C9—C10—C11—C120.9 (3)C2—C1—N1—C12177.38 (19)
C10—C11—C12—N1175.81 (18)C6—C1—N1—C121.0 (2)
C10—C11—C12—C72.6 (3)C2—C1—N1—C134.8 (3)
C8—C7—C12—C111.3 (3)C6—C1—N1—C13176.76 (18)
C6—C7—C12—C11178.78 (17)C11—C12—N1—C1177.99 (19)
C8—C7—C12—N1177.34 (15)C7—C12—N1—C10.6 (2)
C6—C7—C12—N10.09 (19)C11—C12—N1—C134.2 (3)
C8—C9—C15—N262.5 (2)C7—C12—N1—C13177.27 (17)
C10—C9—C15—N2113.96 (19)C14—C13—N1—C195.3 (3)
C8—C9—C15—C16116.72 (19)C14—C13—N1—C1282.2 (3)
C10—C9—C15—C1666.8 (2)C16—C15—N2—C191.1 (3)
N2—C15—C16—C170.3 (3)C9—C15—N2—C19179.70 (15)
C9—C15—C16—C17178.81 (15)C18—C19—N2—C150.8 (3)
N2—C15—C16—C25177.89 (16)C20—C19—N2—C15177.79 (17)
C9—C15—C16—C251.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.822.182.987 (2)166
C17—H17···O1ii0.97 (2)2.38 (2)3.334 (3)171 (2)
C10—H10···Cg1i0.96 (3)2.76 (2)3.559 (2)141 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC27H26N2O
Mr394.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.6417 (5), 9.8599 (3), 16.3208 (5)
β (°) 109.658 (2)
V3)2067.30 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.21 × 0.19 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.984, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
27360, 6459, 3912
Rint0.033
(sin θ/λ)max1)0.721
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.228, 1.02
No. of reflections6459
No. of parameters316
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.39

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.822.182.987 (2)166
C17—H17···O1ii0.97 (2)2.38 (2)3.334 (3)171 (2)
C10—H10···Cg1i0.96 (3)2.76 (2)3.559 (2)141 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

SM and ASP thank Dr Babu Varghese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o1712–o1713.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, M. A. P., Zanatta, N., de Souza, M. V. N., Freitas, I. O., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649–653.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDiaz, J. L., Villacampa, B., Lopez-Calahorra, F. & Velasco, D. (2002). Chem. Mater. 14, 2240–2251.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFriend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Mark, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Bredas, J. L., Logdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121–127.  Web of Science CrossRef CAS Google Scholar
First citationHartline, C. B., Harden, E. A., Williams-Aziz, S. L., Kushner, N. L., Brideau, R. J. & Kern, E. R. (2005). Antiviral Res. 65, 97–105.  Web of Science CrossRef PubMed CAS Google Scholar
First citationItoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMurugavel, S., Ganesh, G., Pandi, A. S., Murugan, R. & Narayanan, S. S. (2008). Acta Cryst. E64, o1681.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589–5594.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895–900.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds