organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-amino-4H-thieno[2,3-b]pyridine-2-carboxyl­ate

aState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: yangli@scu.edu.cn

(Received 20 November 2008; accepted 27 November 2008; online 3 December 2008)

The mol­ecule of the title compound, C10H10N2O2S, is essentially planar, except for the ethyl group, which is twisted away from the carboxyl plane by −90.5 (3)°. In the crystal structure, mol­ecules are linked into a zigzag sheet propagating along the b axis by inter­molecular N—H⋯O and N—H⋯N hydrogen bonds.

Related literature

For general background, see: Litvinov et al. (2005[Litvinov, V. P., Dotsenko, V. V. & Krivokolysko, S. G. (2005). Russ. Chem. Bull. 54, 864-904.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N2O2S

  • Mr = 222.26

  • Monoclinic, P 21 /c

  • a = 6.657 (4) Å

  • b = 13.891 (4) Å

  • c = 10.902 (4) Å

  • β = 91.64 (4)°

  • V = 1007.8 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 292 (2) K

  • 0.60 × 0.46 × 0.42 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: spherical (Dwiggins, 1975[Dwiggins, C. W. (1975). Acta Cryst. A31, 146-148.]) Tmin = 0.840, Tmax = 0.884

  • 1978 measured reflections

  • 1864 independent reflections

  • 1515 reflections with I > 2σ(I)

  • Rint = 0.008

  • 3 standard reflections every 150 reflections intensity decay: 0.6%

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.118

  • S = 1.14

  • 1864 reflections

  • 145 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O2 0.84 (2) 2.26 (2) 2.848 (3) 127 (2)
N2—H1N2⋯O2i 0.84 (2) 2.38 (3) 3.067 (3) 139 (2)
N2—H2N2⋯N1ii 0.81 (3) 2.38 (3) 3.118 (3) 152 (3)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thieno[2,3-b]pyridine derivatives are of great importance owing to their wide biological properties (Litvinov et al.,2005). The title compound is one of the key intermediates in our synthetic investigations of antitumor drugs. We report here its crystal structure.

The thieno[2,3-b]pyridine ring system of the title molecule (Fig.1) is essentially planar. The amino group and the carbonyl group are nearly coplanar with the heterocyclic ring system. The ethyl group is twisted perpendicular to the remaining part of the molecule [C8—O1—C9—C10 = -90.5 (3)°].

In the crystal structure, the molecules are linked into a zigzag sheet propagating along the b axis by intermolecular N—H···O and N—H···N hydrogen bonds (Fig. 2).

Related literature top

For general background, see: Litvinov et al. (2005).

Experimental top

A mixture of 2-chloro-3-cyanopyridine (3.3 g, 0.023 mol), ethyl 2-mercaptoacetate (3.62 g, 0.03 mol), sodium carbonate (2.65 g, 0.025 mol) and anhydrous ethanol (12.0 ml) was heated for 4.5 h under reflux. The reaction mixture was cooled to ambient temperature and added to water (150 ml). The resultant precipitate was stirred for 45 min and then filtered. The filter cake was washed with two portions of water (25 ml) and dried to yield the title compound as a yellow solid (5.032 g, 95.1% yield). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a tetrahydrofuran solution.

Refinement top

H atoms of the amino group were located in a difference map and refined freely. The reminaing H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed open lines.
Ethyl 3-amino-4H-thieno[2,3-b]pyridine-2-carboxylate top
Crystal data top
C10H10N2O2SF(000) = 464
Mr = 222.26Dx = 1.465 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 22 reflections
a = 6.657 (4) Åθ = 4.3–5.7°
b = 13.891 (4) ŵ = 0.30 mm1
c = 10.902 (4) ÅT = 292 K
β = 91.64 (4)°Block, colourless
V = 1007.8 (8) Å30.60 × 0.46 × 0.42 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1515 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.008
Graphite monochromatorθmax = 25.5°, θmin = 2.4°
ω/2θ scansh = 88
Absorption correction: for a sphere
(Dwiggins, 1975)
k = 016
Tmin = 0.840, Tmax = 0.884l = 613
1978 measured reflections3 standard reflections every 150 reflections
1864 independent reflections intensity decay: 0.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.4962P]
where P = (Fo2 + 2Fc2)/3
1864 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C10H10N2O2SV = 1007.8 (8) Å3
Mr = 222.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.657 (4) ŵ = 0.30 mm1
b = 13.891 (4) ÅT = 292 K
c = 10.902 (4) Å0.60 × 0.46 × 0.42 mm
β = 91.64 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1515 reflections with I > 2σ(I)
Absorption correction: for a sphere
(Dwiggins, 1975)
Rint = 0.008
Tmin = 0.840, Tmax = 0.8843 standard reflections every 150 reflections
1978 measured reflections intensity decay: 0.6%
1864 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.26 e Å3
1864 reflectionsΔρmin = 0.38 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20405 (9)0.73591 (5)0.16994 (5)0.0405 (2)
O10.1351 (2)0.60921 (12)0.17935 (15)0.0442 (4)
O20.0551 (3)0.52930 (13)0.35384 (16)0.0487 (5)
N10.5470 (3)0.83735 (15)0.20206 (18)0.0416 (5)
N20.3157 (4)0.58481 (17)0.46991 (19)0.0429 (5)
H1N20.215 (4)0.5502 (18)0.481 (2)0.032 (7)*
H2N20.407 (4)0.593 (2)0.519 (3)0.049 (8)*
C10.7139 (4)0.8539 (2)0.2686 (2)0.0461 (6)
H10.80100.90130.24190.055*
C20.7661 (4)0.8045 (2)0.3756 (2)0.0468 (6)
H20.88510.81920.41840.056*
C30.6422 (4)0.73450 (18)0.4178 (2)0.0394 (6)
H30.67510.70090.48940.047*
C40.4659 (3)0.71448 (16)0.35153 (19)0.0326 (5)
C50.3088 (3)0.64550 (16)0.3736 (2)0.0333 (5)
C60.1607 (3)0.64942 (17)0.2830 (2)0.0348 (5)
C70.4275 (3)0.76841 (17)0.2448 (2)0.0344 (5)
C80.0161 (4)0.59041 (17)0.2784 (2)0.0363 (5)
C90.3115 (4)0.5493 (2)0.1610 (2)0.0457 (6)
H9A0.41780.58640.12090.055*
H9B0.35870.52800.23980.055*
C100.2633 (4)0.4637 (2)0.0840 (3)0.0527 (7)
H10A0.21040.48490.00760.079*
H10B0.38320.42680.06840.079*
H10C0.16530.42450.12670.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0453 (4)0.0474 (4)0.0286 (3)0.0085 (3)0.0057 (2)0.0056 (2)
O10.0454 (10)0.0502 (10)0.0366 (9)0.0120 (8)0.0092 (7)0.0033 (8)
O20.0504 (11)0.0543 (11)0.0411 (10)0.0142 (8)0.0030 (8)0.0107 (8)
N10.0478 (12)0.0464 (12)0.0307 (10)0.0095 (9)0.0028 (9)0.0007 (9)
N20.0456 (13)0.0488 (13)0.0338 (11)0.0089 (11)0.0060 (10)0.0094 (9)
C10.0465 (14)0.0514 (16)0.0404 (14)0.0145 (12)0.0050 (11)0.0037 (12)
C20.0390 (14)0.0640 (17)0.0372 (13)0.0085 (12)0.0022 (10)0.0084 (12)
C30.0399 (13)0.0513 (14)0.0268 (11)0.0002 (11)0.0007 (9)0.0036 (10)
C40.0371 (12)0.0358 (12)0.0250 (11)0.0001 (9)0.0024 (9)0.0048 (9)
C50.0380 (12)0.0364 (12)0.0258 (11)0.0013 (9)0.0024 (9)0.0026 (9)
C60.0396 (13)0.0372 (12)0.0277 (11)0.0029 (10)0.0002 (9)0.0008 (9)
C70.0404 (13)0.0387 (12)0.0242 (10)0.0020 (10)0.0024 (9)0.0039 (9)
C80.0396 (13)0.0390 (13)0.0303 (12)0.0014 (10)0.0012 (10)0.0023 (10)
C90.0386 (14)0.0545 (16)0.0435 (14)0.0059 (11)0.0068 (11)0.0061 (12)
C100.0517 (16)0.0523 (16)0.0540 (16)0.0050 (13)0.0001 (13)0.0078 (13)
Geometric parameters (Å, º) top
S1—C71.736 (3)C2—H20.93
S1—C61.752 (2)C3—C41.389 (3)
O1—C81.347 (3)C3—H30.93
O1—C91.448 (3)C4—C71.401 (3)
O2—C81.215 (3)C4—C51.444 (3)
N1—C11.330 (3)C5—C61.376 (3)
N1—C71.337 (3)C6—C81.434 (3)
N2—C51.346 (3)C9—C101.495 (4)
N2—H1N20.84 (2)C9—H9A0.97
N2—H2N20.81 (3)C9—H9B0.97
C1—C21.389 (4)C10—H10A0.96
C1—H10.93C10—H10B0.96
C2—C31.364 (4)C10—H10C0.96
C7—S1—C690.20 (11)C5—C6—C8125.0 (2)
C8—O1—C9117.08 (19)C5—C6—S1113.77 (17)
C1—N1—C7115.4 (2)C8—C6—S1121.27 (17)
C5—N2—H1N2117.9 (17)N1—C7—C4125.2 (2)
C5—N2—H2N2116 (2)N1—C7—S1122.16 (18)
H1N2—N2—H2N2125 (3)C4—C7—S1112.63 (17)
N1—C1—C2123.9 (2)O2—C8—O1123.1 (2)
N1—C1—H1118.0O2—C8—C6124.5 (2)
C2—C1—H1118.0O1—C8—C6112.4 (2)
C3—C2—C1119.8 (2)O1—C9—C10110.4 (2)
C3—C2—H2120.1O1—C9—H9A109.6
C1—C2—H2120.1C10—C9—H9A109.6
C2—C3—C4118.5 (2)O1—C9—H9B109.6
C2—C3—H3120.7C10—C9—H9B109.6
C4—C3—H3120.7H9A—C9—H9B108.1
C3—C4—C7117.1 (2)C9—C10—H10A109.5
C3—C4—C5130.7 (2)C9—C10—H10B109.5
C7—C4—C5112.2 (2)H10A—C10—H10B109.5
N2—C5—C6126.3 (2)C9—C10—H10C109.5
N2—C5—C4122.5 (2)H10A—C10—H10C109.5
C6—C5—C4111.2 (2)H10B—C10—H10C109.5
C7—N1—C1—C20.0 (4)C1—N1—C7—C40.0 (4)
N1—C1—C2—C30.1 (4)C1—N1—C7—S1179.49 (18)
C1—C2—C3—C40.1 (4)C3—C4—C7—N10.0 (4)
C2—C3—C4—C70.0 (3)C5—C4—C7—N1179.9 (2)
C2—C3—C4—C5180.0 (2)C3—C4—C7—S1179.53 (17)
C3—C4—C5—N21.1 (4)C5—C4—C7—S10.5 (2)
C7—C4—C5—N2178.9 (2)C6—S1—C7—N1179.8 (2)
C3—C4—C5—C6179.5 (2)C6—S1—C7—C40.22 (18)
C7—C4—C5—C60.6 (3)C9—O1—C8—O23.2 (3)
N2—C5—C6—C81.9 (4)C9—O1—C8—C6176.0 (2)
C4—C5—C6—C8179.8 (2)C5—C6—C8—O20.6 (4)
N2—C5—C6—S1178.65 (19)S1—C6—C8—O2179.94 (19)
C4—C5—C6—S10.4 (3)C5—C6—C8—O1179.8 (2)
C7—S1—C6—C50.12 (19)S1—C6—C8—O10.9 (3)
C7—S1—C6—C8179.6 (2)C8—O1—C9—C1090.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O20.84 (2)2.26 (2)2.848 (3)127 (2)
N2—H1N2···O2i0.84 (2)2.38 (3)3.067 (3)139 (2)
N2—H2N2···N1ii0.81 (3)2.38 (3)3.118 (3)152 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H10N2O2S
Mr222.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)6.657 (4), 13.891 (4), 10.902 (4)
β (°) 91.64 (4)
V3)1007.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.60 × 0.46 × 0.42
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionFor a sphere
(Dwiggins, 1975)
Tmin, Tmax0.840, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
1978, 1864, 1515
Rint0.008
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.118, 1.14
No. of reflections1864
No. of parameters145
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.38

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O20.84 (2)2.26 (2)2.848 (3)127 (2)
N2—H1N2···O2i0.84 (2)2.38 (3)3.067 (3)139 (2)
N2—H2N2···N1ii0.81 (3)2.38 (3)3.118 (3)152 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+3/2, z+1/2.
 

References

First citationDwiggins, C. W. (1975). Acta Cryst. A31, 146–148.  CrossRef IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.  Google Scholar
First citationLitvinov, V. P., Dotsenko, V. V. & Krivokolysko, S. G. (2005). Russ. Chem. Bull. 54, 864–904.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds