organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Methyl-9-p-tolyl-4,9-di­hydro­furo[3,4-b]quinolin-1(3H)-one

aSchool of Chemistry and Chemical Engineering, Institute of Pharmaceutical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: scl_78@163.com

(Received 28 November 2008; accepted 8 December 2008; online 13 December 2008)

In the title compound, C19H17NO2, the dihydro­pyridine ring adopts a flattened boat conformation while the furan­one ring is almost planar (r.m.s. deviation 0.018 Å). The mol­ecules are linked into chains along the b axis by N—H⋯O inter­molecular hydrogen bonds. In addition, C—H⋯π inter­actions involving the phenyl ring of the tolyl group as π acceptor are observed.

Related literature

For the biological activities of podophyllotoxin and its derivatives, see: Bosmans et al. (1989[Bosmans, J. P., Eycken, J. V. & Vandewalle, M. (1989). Tetrahedron Lett. 30, 3877-3880.]); Eycken et al. (1989[Eycken, J. V., Bosmans, J. P., Haver, D. V. & Vandewalle, M. (1989). Tetrahedron Lett. 30, 3873-3876.]); Hitosuyanagi et al. (1997[Hitosuyanagi, Y., Kobayashi, M., Fukuyo, M., Takeya, K. & Itokawa, H. (1997). Tetrahedron Lett. 38, 8295-8296.], 1999[Hitosuyanagi, Y., Kobayashi, M., Morita, H., Itokawa, H. & Takeya, K. (1999). Tetrahedron Lett. 40, 9107-9110.]); Lienard et al. (1991[Lienard, P., Royer, J., Quirion, J. C. & Husson, H. P. (1991). Tetrahedron Lett. 32, 2489-2492.]); Magedov et al. (2007[Magedov, I. V., Manapadi, M., Rozhkova, E., Przheval'skii, N. M., Rogelj, S., Shors, S. T., Steelant, W. A., Slambrouck, S. V. & Korinienko, A. (2007). Bioorg. Med. Chem. Lett. 17, 1381-1385.]); Poli & Giambastiani (2002[Poli, G. & Giambastiani, G. (2002). J. Org. Chem. 67, 9456-9459.]); Tomioka et al. (1989[Tomioka, K., Kubota, Y. & Koga, K. (1989). Tetrahedron Lett. 30, 2953-2954.], 1993[Tomioka, K., Kubota, Y. & Koga, K. (1993). Tetrahedron, 49, 1891-1900.]); Tratrat et al. (2002[Tratrat, C., Renault, S. G. & Husson, H. P. (2002). Org. Lett. 4, 3187-3189.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17NO2

  • Mr = 291.34

  • Monoclinic, P 21 /c

  • a = 9.178 (2) Å

  • b = 11.457 (2) Å

  • c = 14.350 (4) Å

  • β = 103.124 (5)°

  • V = 1469.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 223 (2) K

  • 0.60 × 0.48 × 0.45 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.756, Tmax = 0.962

  • 13947 measured reflections

  • 2675 independent reflections

  • 2364 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.135

  • S = 1.16

  • 2675 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.87 2.11 2.862 (2) 144
C19—H19ACg1ii 0.97 2.69 3.645 (3) 167
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y, -z+1. Cg1 is centroid of the C13–C18 ring.

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2003[Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Podophyllotoxin is an antitumor lignan that inhibits microtubule assembly (Eycken et al., 1989; Tomioka et al., 1989; Bosmans et al., 1989). Because of mostly unsuccessfull attempts to use it for the treatment of human neoplasia and complicated side effects, extensive structural modifications have been performed in order to obtain more potent and less toxic anticancer agents (Tomioka et al., 1993; Lienard et al., 1991; Poli et al., 2002). Among them, 4-aza-podophyllotoxin (9-aryl-4,9-dihydrofuro [3,4-b]quinolin-1(3H)-one) derivatives reported as powerful DNA topoisomerase II inhibitors, have recently attached considerable interest (Hitosuyanagi et al., 1997; Hitosuyanagi et al., 1999; Tratrat et al., 2002; Magedov et al., 2007). We report here the crystal structure of the title compound, which was synthesized by the three-component reaction of 4-methylaniline with 4-methylbenzaldehyde and tetronic acid catalyzed by L-proline using ethanol as solvent at 353 K.

In the title compound, the dihydropyridine ring (C1-C5/N1) adopts a flattened boat conformation, with atoms C3 and N1 deviating from the C1/C2/C4/C5 plane (r.m.s. deviation 0.009 Å) by 0.102 (3) and 0.050 (3) Å, respectively (Fig. 1). The five-membered ring is almost planar (r.m.s. deviation 0.018 Å). The dihedral angle between C1/C2/C6/C7-C9 and C1/C2/C4/C5 planes is 2.9 (1)° and that between C1/C2/C4/C5 and C13-C18 plane is 79.77 (7)°.

The molecules are linked into chains (Fig.2) along the b axis by N—H···O intermolecular hydrogen bonds (Table 1). In addition, C—H···π interactions involving the phenyl ring of the tolyl group are observed.

Related literature top

For the biological activities of podophyllotoxin and its derivatives, see: Bosmans et al. (1989); Eycken et al. (1989); Hitosuyanagi et al. (1997, 1999); Lienard et al. (1991); Magedov et al. (2007); Poli & Giambastiani (2002); Tomioka et al. (1989, 1993); Tratrat et al. (2002). Cg1 is centroid of the C13–C18 ring.

Experimental top

The title compound was prepared by the reaction of 4-methylaniline (1 mmol) and 4-methylbenzaldehyde (1 mmol) with tetronic acid (1 mmol) in the presence of L-proline (0.1 mmol) in ethanol (2 ml) at 353 K. Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a N,N-dimethylformamide and ethanol solution. 1H NMR (DMSO-d6, δ): 2.12 (3H, s, CH3), 2.22 (3H, s, CH3), 4.85 (1H, d, J = 16.0 Hz, CH), 4.91 (1H, s, CH), 4.94 (1H, d, J = 16.0 Hz, CH), 6.80–6.84 (2H, m, ArH), 6.93 (1H, d, J = 8.0 Hz, ArH), 7.04–7.08 (4H, m, ArH), 9.94 (1H, s, NH).

Refinement top

H atoms were placed in calculated positions (N-H = 0.87 Å and C-H = 0.94–0.99 Å), and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2–1.5 Ueq(C). A rotating group model was used for the methyl groups.

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
(I) top
Crystal data top
C19H17NO2F(000) = 616
Mr = 291.34Dx = 1.317 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 4940 reflections
a = 9.178 (2) Åθ = 3.3–25.3°
b = 11.457 (2) ŵ = 0.09 mm1
c = 14.350 (4) ÅT = 223 K
β = 103.124 (5)°Block, colourless
V = 1469.5 (6) Å30.60 × 0.48 × 0.45 mm
Z = 4
Data collection top
Rigaku Mercury
diffractometer
2675 independent reflections
Radiation source: fine-focus sealed tube2364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 7.31 pixels mm-1θmax = 25.3°, θmin = 3.3°
ω scansh = 1111
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1312
Tmin = 0.756, Tmax = 0.962l = 1717
13947 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.6176P]
where P = (Fo2 + 2Fc2)/3
2675 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H17NO2V = 1469.5 (6) Å3
Mr = 291.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.178 (2) ŵ = 0.09 mm1
b = 11.457 (2) ÅT = 223 K
c = 14.350 (4) Å0.60 × 0.48 × 0.45 mm
β = 103.124 (5)°
Data collection top
Rigaku Mercury
diffractometer
2675 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2364 reflections with I > 2σ(I)
Tmin = 0.756, Tmax = 0.962Rint = 0.034
13947 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.16Δρmax = 0.23 e Å3
2675 reflectionsΔρmin = 0.21 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06775 (18)0.28146 (14)0.77022 (11)0.0528 (4)
O20.09551 (18)0.13853 (14)0.66103 (12)0.0549 (5)
N10.14394 (19)0.50270 (15)0.68136 (12)0.0396 (4)
H10.15880.56170.72050.048*
C10.1948 (2)0.50585 (16)0.59568 (14)0.0343 (5)
C20.1821 (2)0.40751 (17)0.53741 (13)0.0329 (5)
C30.1160 (2)0.29193 (17)0.56127 (14)0.0342 (5)
H30.03270.27090.50690.041*
C40.0523 (2)0.31008 (18)0.64815 (14)0.0366 (5)
C50.0727 (2)0.40748 (18)0.70132 (14)0.0374 (5)
C60.2347 (2)0.41594 (18)0.45381 (14)0.0382 (5)
H60.22590.35050.41340.046*
C70.2994 (2)0.51643 (18)0.42757 (15)0.0400 (5)
C80.3088 (2)0.61316 (18)0.48745 (16)0.0424 (5)
H80.35110.68270.47100.051*
C90.2572 (2)0.60876 (18)0.57031 (16)0.0401 (5)
H90.26410.67500.60970.048*
C100.3607 (3)0.5198 (2)0.33889 (16)0.0513 (6)
H10A0.46860.51130.35650.077*
H10B0.33520.59380.30640.077*
H10C0.31780.45650.29660.077*
C110.0401 (2)0.2330 (2)0.68790 (16)0.0440 (5)
C120.0028 (3)0.3941 (2)0.78519 (16)0.0479 (6)
H12A0.07880.39610.84550.058*
H12B0.07090.45570.78600.058*
C130.2291 (2)0.19179 (16)0.57700 (13)0.0319 (4)
C140.3781 (2)0.20786 (18)0.62247 (15)0.0409 (5)
H140.41240.28290.64290.049*
C150.4770 (2)0.11455 (19)0.63815 (16)0.0437 (5)
H150.57760.12790.66870.052*
C160.4311 (2)0.00218 (17)0.60993 (14)0.0383 (5)
C170.2828 (2)0.01293 (18)0.56396 (15)0.0425 (5)
H170.24840.08790.54330.051*
C180.1838 (2)0.07991 (17)0.54770 (15)0.0394 (5)
H180.08370.06670.51610.047*
C190.5382 (3)0.0990 (2)0.62813 (17)0.0511 (6)
H19A0.57920.11180.57230.077*
H19B0.48560.16860.64080.077*
H19C0.61870.08200.68300.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0578 (10)0.0565 (10)0.0538 (10)0.0026 (8)0.0326 (8)0.0054 (8)
O20.0594 (10)0.0468 (10)0.0643 (11)0.0111 (8)0.0259 (9)0.0068 (8)
N10.0428 (10)0.0394 (10)0.0397 (10)0.0028 (8)0.0160 (8)0.0071 (8)
C10.0297 (10)0.0376 (11)0.0370 (11)0.0023 (8)0.0104 (9)0.0015 (9)
C20.0303 (10)0.0354 (11)0.0337 (10)0.0012 (8)0.0085 (8)0.0035 (8)
C30.0328 (10)0.0368 (11)0.0343 (10)0.0020 (8)0.0104 (8)0.0007 (8)
C40.0340 (10)0.0408 (11)0.0366 (11)0.0017 (9)0.0116 (9)0.0047 (9)
C50.0313 (10)0.0456 (12)0.0370 (11)0.0033 (9)0.0111 (9)0.0021 (9)
C60.0396 (11)0.0398 (11)0.0369 (11)0.0026 (9)0.0123 (9)0.0015 (9)
C70.0359 (11)0.0454 (12)0.0400 (11)0.0018 (9)0.0114 (9)0.0112 (9)
C80.0407 (12)0.0365 (11)0.0512 (13)0.0021 (9)0.0129 (10)0.0089 (10)
C90.0385 (11)0.0340 (11)0.0481 (12)0.0002 (8)0.0103 (10)0.0023 (9)
C100.0523 (14)0.0589 (15)0.0469 (13)0.0007 (11)0.0198 (11)0.0130 (11)
C110.0407 (12)0.0475 (13)0.0478 (13)0.0029 (10)0.0184 (10)0.0087 (10)
C120.0490 (13)0.0545 (14)0.0462 (13)0.0018 (10)0.0232 (11)0.0011 (11)
C130.0363 (10)0.0334 (10)0.0283 (9)0.0030 (8)0.0122 (8)0.0000 (8)
C140.0415 (12)0.0364 (11)0.0433 (12)0.0054 (9)0.0067 (9)0.0045 (9)
C150.0369 (11)0.0479 (13)0.0449 (12)0.0005 (9)0.0065 (10)0.0002 (10)
C160.0470 (12)0.0396 (12)0.0316 (10)0.0030 (9)0.0158 (9)0.0032 (8)
C170.0502 (13)0.0344 (11)0.0438 (12)0.0068 (9)0.0123 (10)0.0035 (9)
C180.0368 (11)0.0394 (11)0.0416 (11)0.0067 (9)0.0082 (9)0.0005 (9)
C190.0589 (14)0.0472 (13)0.0496 (13)0.0105 (11)0.0172 (11)0.0042 (11)
Geometric parameters (Å, º) top
O1—C111.380 (3)C8—H80.94
O1—C121.438 (3)C9—H90.94
O2—C111.220 (3)C10—H10A0.97
N1—C51.336 (3)C10—H10B0.97
N1—C11.411 (3)C10—H10C0.97
N1—H10.87C12—H12A0.98
C1—C21.392 (3)C12—H12B0.98
C1—C91.395 (3)C13—C181.383 (3)
C2—C61.395 (3)C13—C141.387 (3)
C2—C31.528 (3)C14—C151.387 (3)
C3—C41.506 (3)C14—H140.94
C3—C131.529 (3)C15—C161.386 (3)
C3—H30.99C15—H150.94
C4—C51.341 (3)C16—C171.382 (3)
C4—C111.430 (3)C16—C191.504 (3)
C5—C121.494 (3)C17—C181.384 (3)
C6—C71.386 (3)C17—H170.94
C6—H60.94C18—H180.94
C7—C81.393 (3)C19—H19A0.97
C7—C101.504 (3)C19—H19B0.97
C8—C91.377 (3)C19—H19C0.97
C11—O1—C12108.95 (16)C7—C10—H10C109.5
C5—N1—C1118.85 (17)H10A—C10—H10C109.5
C5—N1—H1120.6H10B—C10—H10C109.5
C1—N1—H1120.6O2—C11—O1118.87 (19)
C2—C1—C9120.68 (18)O2—C11—C4131.6 (2)
C2—C1—N1120.25 (17)O1—C11—C4109.52 (19)
C9—C1—N1119.06 (18)O1—C12—C5103.48 (17)
C1—C2—C6117.57 (18)O1—C12—H12A111.1
C1—C2—C3123.37 (17)C5—C12—H12A111.1
C6—C2—C3119.06 (17)O1—C12—H12B111.1
C4—C3—C2108.32 (16)C5—C12—H12B111.1
C4—C3—C13111.04 (16)H12A—C12—H12B109.0
C2—C3—C13113.10 (15)C18—C13—C14117.52 (18)
C4—C3—H3108.1C18—C13—C3120.23 (17)
C2—C3—H3108.1C14—C13—C3122.24 (17)
C13—C3—H3108.1C13—C14—C15120.86 (19)
C5—C4—C11107.79 (19)C13—C14—H14119.6
C5—C4—C3123.77 (18)C15—C14—H14119.6
C11—C4—C3128.43 (19)C16—C15—C14121.6 (2)
N1—C5—C4124.70 (19)C16—C15—H15119.2
N1—C5—C12125.25 (19)C14—C15—H15119.2
C4—C5—C12110.05 (19)C17—C16—C15117.18 (19)
C7—C6—C2122.99 (19)C17—C16—C19121.35 (19)
C7—C6—H6118.5C15—C16—C19121.5 (2)
C2—C6—H6118.5C16—C17—C18121.46 (19)
C6—C7—C8117.62 (19)C16—C17—H17119.3
C6—C7—C10121.1 (2)C18—C17—H17119.3
C8—C7—C10121.2 (2)C13—C18—C17121.37 (19)
C9—C8—C7121.21 (19)C13—C18—H18119.3
C9—C8—H8119.4C17—C18—H18119.3
C7—C8—H8119.4C16—C19—H19A109.5
C8—C9—C1119.9 (2)C16—C19—H19B109.5
C8—C9—H9120.0H19A—C19—H19B109.5
C1—C9—H9120.0C16—C19—H19C109.5
C7—C10—H10A109.5H19A—C19—H19C109.5
C7—C10—H10B109.5H19B—C19—H19C109.5
H10A—C10—H10B109.5
C5—N1—C1—C25.5 (3)C7—C8—C9—C10.3 (3)
C5—N1—C1—C9174.32 (18)C2—C1—C9—C80.8 (3)
C9—C1—C2—C60.3 (3)N1—C1—C9—C8179.35 (18)
N1—C1—C2—C6179.82 (17)C12—O1—C11—O2177.5 (2)
C9—C1—C2—C3179.55 (17)C12—O1—C11—C41.7 (2)
N1—C1—C2—C30.6 (3)C5—C4—C11—O2174.9 (2)
C1—C2—C3—C47.1 (2)C3—C4—C11—O23.7 (4)
C6—C2—C3—C4173.67 (17)C5—C4—C11—O14.1 (2)
C1—C2—C3—C13116.4 (2)C3—C4—C11—O1177.31 (18)
C6—C2—C3—C1362.8 (2)C11—O1—C12—C51.1 (2)
C2—C3—C4—C58.9 (3)N1—C5—C12—O1175.80 (19)
C13—C3—C4—C5115.9 (2)C4—C5—C12—O13.7 (2)
C2—C3—C4—C11169.54 (19)C4—C3—C13—C1893.7 (2)
C13—C3—C4—C1165.7 (3)C2—C3—C13—C18144.25 (18)
C1—N1—C5—C44.0 (3)C4—C3—C13—C1484.7 (2)
C1—N1—C5—C12175.41 (19)C2—C3—C13—C1437.3 (2)
C11—C4—C5—N1174.73 (19)C18—C13—C14—C150.4 (3)
C3—C4—C5—N14.0 (3)C3—C13—C14—C15178.10 (19)
C11—C4—C5—C124.8 (2)C13—C14—C15—C160.5 (3)
C3—C4—C5—C12176.55 (18)C14—C15—C16—C171.0 (3)
C1—C2—C6—C70.7 (3)C14—C15—C16—C19179.2 (2)
C3—C2—C6—C7178.55 (18)C15—C16—C17—C180.7 (3)
C2—C6—C7—C81.2 (3)C19—C16—C17—C18179.6 (2)
C2—C6—C7—C10177.29 (19)C14—C13—C18—C170.7 (3)
C6—C7—C8—C90.7 (3)C3—C13—C18—C17177.80 (18)
C10—C7—C8—C9177.79 (19)C16—C17—C18—C130.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.872.112.862 (2)144
C19—H19A···Cg1ii0.972.693.645 (3)167
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H17NO2
Mr291.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)9.178 (2), 11.457 (2), 14.350 (4)
β (°) 103.124 (5)
V3)1469.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.60 × 0.48 × 0.45
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.756, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
13947, 2675, 2364
Rint0.034
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.135, 1.16
No. of reflections2675
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: CrystalClear (Rigaku, 2000), CrystalStructure (Rigaku/MSC, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.872.112.862 (2)144
C19—H19A···Cg1ii0.972.693.645 (3)167
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y, z+1.
 

Acknowledgements

The authors are grateful to the Foundation of the Key Laboratory of Biotechnology of Medical Plants of Jiangsu Province for financial support.

References

First citationBosmans, J. P., Eycken, J. V. & Vandewalle, M. (1989). Tetrahedron Lett. 30, 3877–3880.  CrossRef CAS Web of Science Google Scholar
First citationEycken, J. V., Bosmans, J. P., Haver, D. V. & Vandewalle, M. (1989). Tetrahedron Lett. 30, 3873–3876.  Google Scholar
First citationHitosuyanagi, Y., Kobayashi, M., Fukuyo, M., Takeya, K. & Itokawa, H. (1997). Tetrahedron Lett. 38, 8295–8296.  Google Scholar
First citationHitosuyanagi, Y., Kobayashi, M., Morita, H., Itokawa, H. & Takeya, K. (1999). Tetrahedron Lett. 40, 9107–9110.  Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLienard, P., Royer, J., Quirion, J. C. & Husson, H. P. (1991). Tetrahedron Lett. 32, 2489–2492.  CAS Google Scholar
First citationMagedov, I. V., Manapadi, M., Rozhkova, E., Przheval'skii, N. M., Rogelj, S., Shors, S. T., Steelant, W. A., Slambrouck, S. V. & Korinienko, A. (2007). Bioorg. Med. Chem. Lett. 17, 1381–1385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPoli, G. & Giambastiani, G. (2002). J. Org. Chem. 67, 9456–9459.  CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2003). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomioka, K., Kubota, Y. & Koga, K. (1989). Tetrahedron Lett. 30, 2953–2954.  CrossRef CAS Web of Science Google Scholar
First citationTomioka, K., Kubota, Y. & Koga, K. (1993). Tetrahedron, 49, 1891–1900.  CrossRef CAS Web of Science Google Scholar
First citationTratrat, C., Renault, S. G. & Husson, H. P. (2002). Org. Lett. 4, 3187–3189.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds