organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Bromo-N′-(3,5-di­chloro-2-hy­droxy­benzyl­­idene)benzohydrazide

aDepartment of Chemistry, Huainan Normal College, Huainan 232001, People's Republic of China
*Correspondence e-mail: huainanweiyijun@163.com

(Received 1 December 2008; accepted 7 December 2008; online 10 December 2008)

The title compound, C14H9BrCl2N2O2, was prepared by the reaction of 3,5-dichloro-2-hydroxy­benzaldehyde and 3-bromo­benzohydrazide in methanol. The dihedral angle between the two benzene rings is 13.0 (2)°. An intra­molecular O—H⋯N hydrogen bond is observed. The mol­ecules are linked into chains along the c axis by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the synthesis of Schiff bases, see: Akitsu & Einaga (2006[Akitsu, T. & Einaga, Y. (2006). Acta Cryst. E62, o4315-o4317.]); Butcher et al. (2005[Butcher, R. J., Basu Baul, T. S., Singh, K. S. & Smith, F. E. (2005). Acta Cryst. E61, o1007-o1009.]); Habibi et al. (2007[Habibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. E63, o2881.]); Pradeep (2005[Pradeep, C. P. (2005). Acta Cryst. E61, o3825-o3827.]). For related structures, see: Bao & Wei (2008[Bao, X. & Wei, Y.-J. (2008). Acta Cryst. E64, o1682.]); Odabaşoğlu et al. (2007[Odabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1916-o1918.]); Wang et al. (2006[Wang, F.-W., Wei, Y.-J. & Zhu, Q.-Y. (2006). Chin. J. Struct. Chem. 25, 1179-1182.]); Wei et al. (2008[Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2008). Transition Met. Chem. 33, 543-546.]); Yathirajan et al. (2007[Yathirajan, H. S., Vijesh, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o936-o938.]); Yehye et al. (2008[Yehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1452.]); Zhu et al. (2007[Zhu, C.-G., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m3197-m3198.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9BrCl2N2O2

  • Mr = 388.04

  • Monoclinic, P 21 /c

  • a = 8.272 (2) Å

  • b = 22.366 (3) Å

  • c = 8.237 (2) Å

  • β = 104.014 (2)°

  • V = 1478.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.15 mm−1

  • T = 298 (2) K

  • 0.23 × 0.23 × 0.22 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.495, Tmax = 0.513

  • 8590 measured reflections

  • 3224 independent reflections

  • 2144 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.075

  • S = 0.98

  • 3224 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.88 2.598 (3) 145
N2—H2⋯O2i 0.89 (1) 2.03 (1) 2.898 (3) 165 (3)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are readily synthesized by the reaction of aldehydes with primary amines (Akitsu & Einaga, 2006; Pradeep, 2005; Butcher et al., 2005; Habibi et al., 2007). We have reported a few Schiff bases and their complexes (Wei et al., 2008; Zhu et al., 2007; Wang et al., 2006). In this paper, the crystal structure of a new Schiff base compound is reported.

The CN bond length in the title molecule (Fig.1) is comparable with those observed in other Schiff bases (Yehye et al., 2008; Odabaşoğlu et al., 2007; Yathirajan et al., 2007). All bond lengths are within normal ranges and are comparable to those observed in a related compound (Bao & Wei, 2008). The dihedral angle between C1—C6 and C9—C14 phenyl rings is 13.0 (2)°, indicating that the molecule is non-planar. An intramolecular O1—H1···N1 hydrogen bond is observed.

The crystal structure is stabilized by intermolecular N–H···O hydrogen bonds (Table 1), forming chains along the c axis (Fig. 2).

Related literature top

For the synthesis of Schiff bases, see: Akitsu & Einaga (2006); Butcher et al. (2005); Habibi et al. (2007); Pradeep (2005). For related structures, see: Bao & Wei (2008); Odabaşoğlu et al. (2007); Wang et al. (2006); Wei et al. (2008); Yathirajan et al. (2007); Yehye et al. (2008); Zhu et al. (2007).

Experimental top

3,5-Dichloro-2-hydroxybenzaldehyde (1.0 mmol) and 3-bromobenzohydrazide (1.0 mmol) were dissolved in methanol (30 ml). The mixture was stirred at reflux for 10 min to give a clear colourless solution. After keeping this solution in air for 5 d, colourless needle-shaped crystals were formed.

Refinement top

Atom H2 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. All other H atoms were positioned geometrically (C–H = 0.93 Å and O–H = 0.82 Å) and refined as riding, with Uiso(H) values set at 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
3-Bromo-N'-(3,5-dichloro-2-hydroxybenzylidene)benzohydrazide top
Crystal data top
C14H9BrCl2N2O2F(000) = 768
Mr = 388.04Dx = 1.743 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1779 reflections
a = 8.272 (2) Åθ = 2.5–24.9°
b = 22.366 (3) ŵ = 3.15 mm1
c = 8.237 (2) ÅT = 298 K
β = 104.014 (2)°Cut from needle, colorless
V = 1478.6 (5) Å30.23 × 0.23 × 0.22 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3224 independent reflections
Radiation source: fine-focus sealed tube2144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.495, Tmax = 0.513k = 2528
8590 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0309P)2]
where P = (Fo2 + 2Fc2)/3
3224 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C14H9BrCl2N2O2V = 1478.6 (5) Å3
Mr = 388.04Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.272 (2) ŵ = 3.15 mm1
b = 22.366 (3) ÅT = 298 K
c = 8.237 (2) Å0.23 × 0.23 × 0.22 mm
β = 104.014 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3224 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2144 reflections with I > 2σ(I)
Tmin = 0.495, Tmax = 0.513Rint = 0.035
8590 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.32 e Å3
3224 reflectionsΔρmin = 0.29 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.48270 (4)0.491887 (13)0.27385 (4)0.05628 (13)
Cl11.05566 (10)1.05415 (3)0.26163 (9)0.0498 (2)
Cl21.25693 (10)0.85535 (3)0.61875 (9)0.0575 (2)
N10.7849 (3)0.79256 (10)0.0814 (3)0.0410 (6)
N20.6808 (3)0.76119 (10)0.0450 (3)0.0422 (6)
O11.0195 (3)0.79478 (8)0.3556 (2)0.0541 (5)
H10.94620.77930.28270.081*
O20.6767 (3)0.68457 (8)0.1345 (2)0.0489 (5)
C10.9228 (3)0.88201 (12)0.1849 (3)0.0367 (6)
C21.0236 (3)0.85387 (12)0.3269 (3)0.0395 (7)
C31.1329 (3)0.88909 (12)0.4431 (3)0.0397 (7)
C41.1435 (3)0.94963 (12)0.4228 (3)0.0409 (7)
H41.21830.97220.50170.049*
C51.0430 (3)0.97700 (11)0.2850 (3)0.0373 (7)
C60.9340 (3)0.94382 (12)0.1660 (3)0.0387 (7)
H60.86760.96260.07260.046*
C70.8091 (3)0.84757 (12)0.0558 (3)0.0417 (7)
H70.75480.86560.04420.050*
C80.6373 (3)0.70501 (12)0.0078 (3)0.0392 (7)
C90.5343 (3)0.67109 (12)0.1518 (3)0.0373 (6)
C100.5519 (3)0.60935 (11)0.1486 (3)0.0371 (6)
H100.62480.59060.05950.044*
C110.4591 (3)0.57631 (12)0.2802 (3)0.0404 (7)
C120.3488 (4)0.60312 (13)0.4123 (3)0.0468 (7)
H120.28770.58010.50000.056*
C130.3297 (4)0.66421 (13)0.4133 (4)0.0500 (8)
H130.25440.68260.50130.060*
C140.4222 (4)0.69829 (13)0.2838 (3)0.0444 (7)
H140.40930.73960.28520.053*
H20.662 (4)0.7733 (13)0.1513 (18)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0667 (2)0.04067 (18)0.0550 (2)0.00069 (16)0.00200 (16)0.00918 (15)
Cl10.0677 (6)0.0367 (4)0.0459 (4)0.0006 (3)0.0154 (4)0.0005 (3)
Cl20.0656 (6)0.0545 (5)0.0430 (4)0.0122 (4)0.0048 (4)0.0070 (4)
N10.0484 (15)0.0403 (14)0.0325 (13)0.0066 (11)0.0066 (11)0.0035 (11)
N20.0558 (16)0.0401 (13)0.0280 (12)0.0083 (12)0.0053 (12)0.0038 (11)
O10.0718 (17)0.0375 (11)0.0463 (13)0.0037 (10)0.0013 (11)0.0071 (10)
O20.0714 (15)0.0428 (11)0.0283 (11)0.0042 (10)0.0042 (10)0.0001 (9)
C10.0396 (16)0.0403 (16)0.0311 (14)0.0024 (13)0.0103 (12)0.0019 (13)
C20.0462 (18)0.0379 (16)0.0361 (16)0.0023 (13)0.0130 (14)0.0055 (13)
C30.0410 (17)0.0448 (17)0.0311 (15)0.0044 (14)0.0047 (13)0.0022 (13)
C40.0429 (18)0.0442 (17)0.0335 (15)0.0037 (14)0.0050 (13)0.0038 (13)
C50.0457 (19)0.0329 (15)0.0346 (15)0.0011 (12)0.0119 (14)0.0007 (12)
C60.0467 (18)0.0403 (16)0.0295 (14)0.0050 (14)0.0100 (13)0.0049 (13)
C70.0463 (19)0.0455 (18)0.0324 (15)0.0037 (14)0.0076 (13)0.0004 (13)
C80.0462 (18)0.0393 (16)0.0317 (16)0.0023 (13)0.0085 (13)0.0041 (13)
C90.0430 (18)0.0408 (16)0.0280 (14)0.0024 (13)0.0085 (13)0.0018 (13)
C100.0418 (17)0.0370 (15)0.0302 (15)0.0013 (13)0.0044 (12)0.0003 (12)
C110.0399 (18)0.0410 (16)0.0404 (17)0.0012 (13)0.0098 (14)0.0043 (14)
C120.0464 (19)0.0520 (19)0.0375 (17)0.0042 (15)0.0016 (14)0.0060 (14)
C130.0449 (19)0.056 (2)0.0424 (18)0.0007 (15)0.0023 (14)0.0041 (15)
C140.0495 (19)0.0385 (16)0.0440 (17)0.0040 (14)0.0094 (15)0.0053 (14)
Geometric parameters (Å, º) top
Br1—C111.898 (3)C4—H40.93
Cl1—C51.742 (3)C5—C61.377 (4)
Cl2—C31.731 (3)C6—H60.93
N1—C71.272 (3)C7—H70.93
N1—N21.372 (3)C8—C91.490 (4)
N2—C81.362 (3)C9—C141.387 (4)
N2—H20.893 (10)C9—C101.388 (3)
O1—C21.345 (3)C10—C111.381 (4)
O1—H10.82C10—H100.93
O2—C81.227 (3)C11—C121.377 (4)
C1—C61.397 (4)C12—C131.375 (4)
C1—C21.410 (4)C12—H120.93
C1—C71.458 (4)C13—C141.381 (4)
C2—C31.391 (4)C13—H130.93
C3—C41.370 (3)C14—H140.93
C4—C51.377 (4)
C7—N1—N2117.7 (2)N1—C7—H7120.3
C8—N2—N1116.9 (2)C1—C7—H7120.3
C8—N2—H2120 (2)O2—C8—N2122.4 (2)
N1—N2—H2121 (2)O2—C8—C9122.6 (2)
C2—O1—H1109.5N2—C8—C9115.0 (2)
C6—C1—C2119.5 (3)C14—C9—C10119.9 (3)
C6—C1—C7119.3 (3)C14—C9—C8123.1 (2)
C2—C1—C7121.1 (2)C10—C9—C8117.0 (2)
O1—C2—C3118.4 (2)C11—C10—C9118.8 (3)
O1—C2—C1123.3 (3)C11—C10—H10120.6
C3—C2—C1118.3 (2)C9—C10—H10120.6
C4—C3—C2121.7 (3)C12—C11—C10121.6 (3)
C4—C3—Cl2119.4 (2)C12—C11—Br1119.9 (2)
C2—C3—Cl2118.9 (2)C10—C11—Br1118.5 (2)
C3—C4—C5119.8 (3)C13—C12—C11119.4 (3)
C3—C4—H4120.1C13—C12—H12120.3
C5—C4—H4120.1C11—C12—H12120.3
C4—C5—C6120.5 (3)C12—C13—C14120.2 (3)
C4—C5—Cl1119.4 (2)C12—C13—H13119.9
C6—C5—Cl1120.1 (2)C14—C13—H13119.9
C5—C6—C1120.2 (3)C13—C14—C9120.2 (3)
C5—C6—H6119.9C13—C14—H14119.9
C1—C6—H6119.9C9—C14—H14119.9
N1—C7—C1119.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.598 (3)145
N2—H2···O2i0.89 (1)2.03 (1)2.898 (3)165 (3)
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H9BrCl2N2O2
Mr388.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.272 (2), 22.366 (3), 8.237 (2)
β (°) 104.014 (2)
V3)1478.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.15
Crystal size (mm)0.23 × 0.23 × 0.22
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.495, 0.513
No. of measured, independent and
observed [I > 2σ(I)] reflections
8590, 3224, 2144
Rint0.035
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.075, 0.98
No. of reflections3224
No. of parameters194
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.29

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.598 (3)145
N2—H2···O2i0.89 (1)2.03 (1)2.898 (3)165 (3)
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of the Education Office of Anhui Province, China, for financial support (grant No. KJ2007A126ZC).

References

First citationAkitsu, T. & Einaga, Y. (2006). Acta Cryst. E62, o4315–o4317.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBao, X. & Wei, Y.-J. (2008). Acta Cryst. E64, o1682.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Basu Baul, T. S., Singh, K. S. & Smith, F. E. (2005). Acta Cryst. E61, o1007–o1009.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHabibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. E63, o2881.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOdabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1916–o1918.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPradeep, C. P. (2005). Acta Cryst. E61, o3825–o3827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, F.-W., Wei, Y.-J. & Zhu, Q.-Y. (2006). Chin. J. Struct. Chem. 25, 1179–1182.  CAS Google Scholar
First citationWei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2008). Transition Met. Chem. 33, 543–546.  Web of Science CSD CrossRef CAS Google Scholar
First citationYathirajan, H. S., Vijesh, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o936–o938.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1452.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, C.-G., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m3197–m3198.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds