organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phen­yl)-4-(2-oxo­cyclo­pent­yl)butyramide

aInstitute of Homogeneous Catalysis, Department of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: scuzhou106@yahoo.com.cn

(Received 12 December 2008; accepted 13 December 2008; online 20 December 2008)

In the title compound, C15H18ClNO2, the amide group is coplanar with the chloro­phenyl group, making a dihedral angle of 1.71 (12)°. The cyclo­penta­none ring adopts a twist conformation. A weak intra­molecular C—H⋯O hydrogen bond is observed. Mol­ecules are linked into cyclic centrosymmetric dimers by paired N—H⋯O hydrogen bonds.

Related literature

For the synthesis of cyathin terpenoids, see: Drège et al. (2006[Drège, E., Tominiaux, C., Morgant, G. & Desmaële, D. (2006). Eur. J. Org. Chem. pp. 4825-4840.]).

[Scheme 1]

Experimental

Crystal data
  • C15H18ClNO2

  • Mr = 279.75

  • Triclinic, [P \overline 1]

  • a = 5.5897 (2) Å

  • b = 8.8847 (3) Å

  • c = 14.6480 (4) Å

  • α = 80.906 (2)°

  • β = 86.436 (2)°

  • γ = 85.351 (2)°

  • V = 715.05 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 (2) K

  • 0.42 × 0.40 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.895, Tmax = 0.948

  • 8899 measured reflections

  • 3273 independent reflections

  • 1648 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.147

  • S = 1.01

  • 3273 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.17 2.980 (2) 158
C15—H15⋯O2 0.93 2.29 2.889 (2) 121
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2-Oxocyclopentyl carboxylic acid derivatives are a class of starting materials important for the preparation of cyathin terpenoids (Drège et al., 2006). We report here the crystal structure of the title compound, a oxocyclopentyl derivative.

Bond lengths and angles are normal. The amide group is almost coplanar with the benzene ring system (Fig. 1). The C8/C9/N1/O2 and C10—C15 planes form dihedral angle of 1.71 (12)°. The cyclopentanone ring adopts a twist conformation. An intramolecular C15—H15···O2 hydrogen bond is observed.

The crystal packing is stabilized by N—H···O hydrogen bonds (Table 1). The molecules are linked into cyclic centrosymmetric dimers by paired N—H···O hydrogen bonds.

Related literature top

For the synthesis of cyathin terpenoids, see: Drège et al. (2006).

Experimental top

A mixture of spiro[4,4]nonane-1,6-dione (1 mmol), p-chloroaniline (2.2 mmol) and iodine (0.1 mmol) was stirred in refluxing dichloromethane (20 ml) for 24 h to afford the title compound. Single crystals suitable for X-ray diffraction were obtained by slow evaporation an ethyl acetate solution.

Refinement top

All H atoms were placed in calculated positions, with C-H = 0.93–0.98 Å and N-H = 0.86 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. H atoms have been omitted for clarity.
N-(4-Chlorophenyl)-4-(2-oxocyclopentyl)butyramide top
Crystal data top
C15H18ClNO2Z = 2
Mr = 279.75F(000) = 296
Triclinic, P1Dx = 1.299 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5897 (2) ÅCell parameters from 2436 reflections
b = 8.8847 (3) Åθ = 2.8–25.4°
c = 14.6480 (4) ŵ = 0.27 mm1
α = 80.906 (2)°T = 296 K
β = 86.436 (2)°Plate, colourless
γ = 85.351 (2)°0.42 × 0.40 × 0.20 mm
V = 715.05 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3273 independent reflections
Radiation source: fine-focus sealed tube1648 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 77
Tmin = 0.895, Tmax = 0.948k = 1111
8899 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0664P)2]
where P = (Fo2 + 2Fc2)/3
3273 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H18ClNO2γ = 85.351 (2)°
Mr = 279.75V = 715.05 (4) Å3
Triclinic, P1Z = 2
a = 5.5897 (2) ÅMo Kα radiation
b = 8.8847 (3) ŵ = 0.27 mm1
c = 14.6480 (4) ÅT = 296 K
α = 80.906 (2)°0.42 × 0.40 × 0.20 mm
β = 86.436 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3273 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1648 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.948Rint = 0.047
8899 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.01Δρmax = 0.35 e Å3
3273 reflectionsΔρmin = 0.21 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.27737 (9)0.49407 (7)0.08887 (3)0.06892 (18)
O10.2238 (3)1.05919 (19)0.73712 (11)0.0902 (5)
O20.7274 (3)0.6356 (2)0.50469 (10)0.0867 (5)
N10.5659 (3)0.70953 (19)0.36547 (10)0.0563 (5)
H1N0.44050.75670.34020.068*
C10.0587 (4)0.9846 (2)0.77649 (14)0.0629 (6)
C20.0494 (4)0.9474 (3)0.87916 (14)0.0796 (8)
H2A0.17080.87810.90450.095*
H2B0.07491.03940.90750.095*
C30.2010 (4)0.8723 (3)0.89563 (15)0.0833 (8)
H3A0.19790.78990.94770.100*
H3B0.30910.94610.90770.100*
C40.2785 (4)0.8112 (3)0.80617 (14)0.0780 (7)
H4A0.45210.80530.79710.094*
H4B0.22320.71010.80750.094*
C50.1666 (4)0.9211 (3)0.73132 (14)0.0690 (7)
H50.27181.00580.71950.083*
C60.1382 (3)0.8771 (2)0.63830 (13)0.0604 (6)
H6A0.08570.96770.59620.072*
H6B0.01310.80620.64380.072*
C70.3644 (4)0.8047 (3)0.59707 (14)0.0640 (6)
H7A0.49260.87260.59560.077*
H7B0.41060.71020.63690.077*
C80.3397 (4)0.7707 (3)0.50060 (13)0.0643 (6)
H8A0.21140.70290.50220.077*
H8B0.29280.86530.46100.077*
C90.5627 (3)0.6992 (2)0.45871 (13)0.0569 (6)
C100.7424 (3)0.6552 (2)0.30324 (12)0.0480 (5)
C110.6974 (3)0.6867 (2)0.21012 (13)0.0567 (6)
H110.55510.74140.19160.068*
C120.8597 (3)0.6383 (2)0.14440 (13)0.0583 (6)
H120.82720.65980.08200.070*
C131.0715 (4)0.5576 (2)0.17201 (13)0.0541 (5)
C141.1172 (3)0.5254 (2)0.26439 (13)0.0573 (6)
H141.26020.47120.28260.069*
C150.9538 (3)0.5726 (2)0.33070 (13)0.0544 (5)
H150.98540.54910.39310.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0568 (3)0.0872 (4)0.0638 (3)0.0107 (3)0.0032 (2)0.0254 (3)
O10.0787 (10)0.1028 (12)0.0828 (10)0.0400 (9)0.0128 (8)0.0151 (9)
O20.0723 (10)0.1230 (13)0.0595 (9)0.0368 (10)0.0164 (8)0.0149 (9)
N10.0465 (9)0.0684 (11)0.0526 (9)0.0090 (8)0.0091 (7)0.0088 (8)
C10.0598 (12)0.0642 (14)0.0629 (12)0.0108 (11)0.0048 (10)0.0112 (11)
C20.0792 (15)0.0972 (18)0.0594 (13)0.0053 (14)0.0041 (12)0.0120 (13)
C30.0906 (17)0.1014 (19)0.0553 (12)0.0122 (15)0.0159 (12)0.0090 (13)
C40.0749 (15)0.0888 (17)0.0686 (14)0.0144 (13)0.0177 (12)0.0118 (13)
C50.0677 (13)0.0778 (15)0.0586 (12)0.0218 (12)0.0071 (11)0.0137 (12)
C60.0537 (12)0.0688 (14)0.0581 (11)0.0089 (11)0.0066 (10)0.0132 (11)
C70.0566 (12)0.0726 (15)0.0634 (12)0.0057 (11)0.0043 (10)0.0173 (11)
C80.0556 (12)0.0810 (15)0.0556 (12)0.0094 (11)0.0046 (10)0.0148 (11)
C90.0502 (11)0.0674 (14)0.0524 (11)0.0056 (11)0.0091 (10)0.0096 (10)
C100.0442 (10)0.0490 (12)0.0512 (10)0.0003 (9)0.0041 (9)0.0102 (9)
C110.0497 (11)0.0652 (13)0.0543 (11)0.0058 (10)0.0097 (9)0.0091 (10)
C120.0577 (12)0.0693 (14)0.0482 (11)0.0029 (11)0.0078 (9)0.0117 (10)
C130.0524 (11)0.0540 (12)0.0572 (11)0.0021 (10)0.0000 (9)0.0144 (10)
C140.0513 (11)0.0565 (13)0.0634 (12)0.0066 (10)0.0109 (10)0.0094 (11)
C150.0527 (11)0.0596 (13)0.0505 (11)0.0003 (10)0.0084 (9)0.0074 (10)
Geometric parameters (Å, º) top
Cl1—C131.750 (2)C6—C71.508 (3)
O1—C11.212 (2)C6—H6A0.97
O2—C91.222 (2)C6—H6B0.97
N1—C91.353 (2)C7—C81.508 (3)
N1—C101.410 (2)C7—H7A0.97
N1—H1N0.86C7—H7B0.97
C1—C21.491 (3)C8—C91.495 (3)
C1—C51.497 (3)C8—H8A0.97
C2—C31.517 (3)C8—H8B0.97
C2—H2A0.97C10—C111.383 (2)
C2—H2B0.97C10—C151.386 (2)
C3—C41.522 (3)C11—C121.376 (3)
C3—H3A0.97C11—H110.93
C3—H3B0.97C12—C131.382 (3)
C4—C51.481 (3)C12—H120.93
C4—H4A0.97C13—C141.374 (3)
C4—H4B0.97C14—C151.382 (3)
C5—C61.496 (3)C14—H140.93
C5—H50.98C15—H150.93
C9—N1—C10130.17 (15)H6A—C6—H6B107.7
C9—N1—H1N114.9C8—C7—C6113.75 (16)
C10—N1—H1N114.9C8—C7—H7A108.8
O1—C1—C2123.9 (2)C6—C7—H7A108.8
O1—C1—C5126.11 (19)C8—C7—H7B108.8
C2—C1—C5110.00 (17)C6—C7—H7B108.8
C1—C2—C3104.75 (17)H7A—C7—H7B107.7
C1—C2—H2A110.8C9—C8—C7114.38 (16)
C3—C2—H2A110.8C9—C8—H8A108.7
C1—C2—H2B110.8C7—C8—H8A108.7
C3—C2—H2B110.8C9—C8—H8B108.7
H2A—C2—H2B108.9C7—C8—H8B108.7
C2—C3—C4104.48 (17)H8A—C8—H8B107.6
C2—C3—H3A110.9O2—C9—N1122.76 (18)
C4—C3—H3A110.9O2—C9—C8122.95 (18)
C2—C3—H3B110.9N1—C9—C8114.29 (16)
C4—C3—H3B110.9C11—C10—C15119.36 (18)
H3A—C3—H3B108.9C11—C10—N1117.04 (16)
C5—C4—C3105.72 (18)C15—C10—N1123.60 (16)
C5—C4—H4A110.6C12—C11—C10121.07 (18)
C3—C4—H4A110.6C12—C11—H11119.5
C5—C4—H4B110.6C10—C11—H11119.5
C3—C4—H4B110.6C11—C12—C13119.37 (18)
H4A—C4—H4B108.7C11—C12—H12120.3
C4—C5—C6120.96 (19)C13—C12—H12120.3
C4—C5—C1104.34 (17)C14—C13—C12119.93 (18)
C6—C5—C1115.15 (17)C14—C13—Cl1120.45 (15)
C4—C5—H5105.0C12—C13—Cl1119.61 (15)
C6—C5—H5105.0C13—C14—C15120.91 (18)
C1—C5—H5105.0C13—C14—H14119.5
C5—C6—C7113.96 (16)C15—C14—H14119.5
C5—C6—H6A108.8C14—C15—C10119.36 (17)
C7—C6—H6A108.8C14—C15—H15120.3
C5—C6—H6B108.8C10—C15—H15120.3
C7—C6—H6B108.8
O1—C1—C2—C3172.7 (2)C10—N1—C9—C8179.45 (18)
C5—C1—C2—C35.5 (3)C7—C8—C9—O219.1 (3)
C1—C2—C3—C423.3 (3)C7—C8—C9—N1161.51 (18)
C2—C3—C4—C533.3 (3)C9—N1—C10—C11178.43 (19)
C3—C4—C5—C6161.1 (2)C9—N1—C10—C152.0 (3)
C3—C4—C5—C129.4 (2)C15—C10—C11—C120.5 (3)
O1—C1—C5—C4166.9 (2)N1—C10—C11—C12179.91 (18)
C2—C1—C5—C414.9 (3)C10—C11—C12—C130.3 (3)
O1—C1—C5—C632.0 (3)C11—C12—C13—C140.5 (3)
C2—C1—C5—C6149.9 (2)C11—C12—C13—Cl1179.36 (16)
C4—C5—C6—C749.6 (3)C12—C13—C14—C150.1 (3)
C1—C5—C6—C7176.49 (18)Cl1—C13—C14—C15178.77 (15)
C5—C6—C7—C8175.97 (19)C13—C14—C15—C100.9 (3)
C6—C7—C8—C9179.88 (18)C11—C10—C15—C141.0 (3)
C10—N1—C9—O20.0 (3)N1—C10—C15—C14179.37 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.172.980 (2)158
C15—H15···O20.932.292.889 (2)121
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC15H18ClNO2
Mr279.75
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.5897 (2), 8.8847 (3), 14.6480 (4)
α, β, γ (°)80.906 (2), 86.436 (2), 85.351 (2)
V3)715.05 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.42 × 0.40 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.895, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
8899, 3273, 1648
Rint0.047
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.147, 1.01
No. of reflections3273
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.21

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.172.980 (2)158
C15—H15···O20.932.292.889 (2)121
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

The authors thank the NSFC (grant Nos. 20672075 and 20771076) and Sichuan University for financial support.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrège, E., Tominiaux, C., Morgant, G. & Desmaële, D. (2006). Eur. J. Org. Chem. pp. 4825–4840.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds