organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-1-butylindoline-2,3-dione

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong Province, People's Republic of China, and bState Key Laboratory of Crystalline Materials, Shandong University, Jinan 250100, Shandong Province, People's Republic of China
*Correspondence e-mail: fangqi@sdu.edu.cn

(Received 12 October 2008; accepted 10 December 2008; online 17 December 2008)

There are two independent mol­ecules in the asymmetric unit of the title compound, C12H12BrNO2. The C—C bond lengths of the two carbonyl C atoms of the five-membered rings are distinctly longer than a normal Csp2—Csp2 single bond. One of the mol­ecules makes parallel self-coupled (inversion) dimers by ππ inter­actions with phen­yl–phenyl inter­planar distances of 3.403 (2) Å. The other mol­ecule also forms self-dimers at longer phen­yl–phenyl plane distances [3.649 (2) Å]. In the crystal, a C—H⋯O interaction is seen.

Related literature

For synthesis and applications, see: Kopka et al. (2006[Kopka, K., Faust, A., Keul, P., Wagner, S., Breyholz, H.-J., Holtke, C., Schober, O., Schafers, M. & Levkau, B. (2006). J. Med. Chem. 49, 6704-6715.]); Pirrung et al. (2005[Pirrung, M. C., Pansare, S. V., Sarma, K. D., Keith, K. A. & Kern, E. R. (2005). J. Med. Chem. 48, 3045-3050.]); Zhou et al. (2006[Zhou, L., Liu, Y., Zhang, W., Wei, P., Huang, C., Pei, J., Yuan, Y. & Lai, L. (2006). J. Med. Chem. 49, 3440-3443.]). For related crystal structures, see: Goldschmidt & Llewellyn (1950[Goldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294-305.]); Palenik et al. (1990[Palenik, G. J., Koziol, A. E., Katritzky, A. R. & Fan, W.-Q. (1990). J. Chem. Soc. Chem. Commun. pp. 715-716.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12BrNO2

  • Mr = 282.14

  • Monoclinic, P 21 /c

  • a = 13.3097 (2) Å

  • b = 11.8793 (2) Å

  • c = 16.2238 (2) Å

  • β = 112.340 (1)°

  • V = 2372.62 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.45 mm−1

  • T = 296 (2) K

  • 0.37 × 0.13 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.526, Tmax = 0.744 (expected range = 0.487–0.689)

  • 16713 measured reflections

  • 5170 independent reflections

  • 2424 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.070

  • S = 0.93

  • 5170 reflections

  • 364 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected bond lengths (Å)

N1—C1 1.375 (3)
N1—C8 1.411 (4)
N1—C9 1.425 (4)
C1—C2 1.545 (4)
N2—C21 1.373 (3)
N2—C28 1.401 (3)
N2—C29 1.467 (4)
C21—C22 1.558 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3i 0.95 (3) 2.44 (3) 3.367 (5) 165 (2)
Symmetry code: (i) -x, -y, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Isatin, 2,3-indolinedione is traditionally obtained from oxidation of oxindole and indigo blue. Its derivates have long been used as precursors of medicines and reductive dyes (Zhou et al., 2006; Pirrung et al., 2005; Kopka et al., 2006). The first crystal structure report on isatin was by Goldschmidt and Llewellyn, 1950. Here we report the crystal structure of N-butyl-6-bromoisatin. There are two independent molecules in the asymmetric unit with very similar bond parameters. Except for the fused aromatic bond of C3C8 in one molecule and C23C28 bond in the other molecule, four other bonds in the five-membered heterocyclic rings can be classified as single C—C bonds and π-conjugated CN bonds. The C1—C2 (1.545 (4) Å) and C21—C22 (1.558 (4) Å) bond lengths are longer than expected for a C(sp2)-C(sp2) single bond. This may be the result of the repulsion of the lone pair electrons of the two oxygen atoms in cis-diones (Palenik et al., 1990). Nitrogen atoms and their three bonded carbons are perfectly co-planar, showing that the sp2 N atoms allocate two pz electrons for π-bonding. The bond lengths of the π-conjugated NC bonds (c.f. Table 1) are much shorter than a single C—N bond length. Molecules are packed in dimers (Figure 2). One kind of the independent molecules are linked through a symmetry center to form dimer stack A while two other molecules form another dimer stack B. Mean planes of A and B dimers have a dihedral angle of 85.8 (1)°. The phenyl-phenyl spacing (3.40 (1) Å) in A dimers is considerably shorter than the spacing (3.65 (1) Å) in teh B dimers, indicating relatively stronger intermolecular π-π interactions between these A molecules. The intermolecular interactions in dimer A are further strengthened by C–Br short contacts. The C1···Br1[-x+1, -y+1, -z] and C2···Br1[-x+1, -y+1, -z] in dimer A are 3.476 (3) Å and 3.538 (3) Å, respectively. By comparison, the corresponding C···Br contacts in dimer B are much longer with the shortest distance being 3.672 (4) Å for C22···Br2[-x+1, -y+1, -z]. It may be the result of these different C···Br contacts that the C1—C2 bond length in dimer A is marginally shorter than the C21—C22 bond in dimer B. Amongst intermolecular C—H···O hydrogen bonds the strongest is the C7—H7···O3 one between dimers A and B (see Table 2).

Related literature top

For synthesis and applications, see: Kopka et al. (2006); Pirrung et al. (2005); Zhou et al. (2006). For related crystal structures, see: Goldschmidt & Llewellyn (1950); Palenik et al. (1990).

Experimental top

6-Bromoisatin (10.5 g) was dissolved in 100 ml DMSO in a three-necked flask. Then KI (3.50 g), cetyltrimethyl ammonium bromide (1.00 g), and KOH (30.0 g) in 20.0 g water were added. Then 40.0 ml of n-bromobutane was added drop-wise into the above mixture with stirring. The mixture was stirred at 343 K for 2 days under nitrogen protection. The reaction mixture was washed by water, extracted with CHCl3, then the chloroform layer was dried by Na2SO4. After vaporizing the solvent, the crude product was purified by column chromatography, resulting in 9.5 g (yield 71%) N-butyl-6-bromoisatin product. The compound was dissolved in chloroform again. On most of the solvent evaporating at room temperature orange lump title crystals were formed.

Refinement top

All H atoms except those on the methyl groups were initially found in difference electron density syntheses and were used in the least-squares refinement. Six H atoms on two terminal methyls could also be located in the difference maps but some H—C bond parameters in the methyl groups became unreasonable. So HFIX 137 instructions were used to restrain the methyl H-positions.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Two N-butyl-6-bromoisatin molecules in the asymmetric unit with 30% probability displacement ellipsoids
[Figure 2] Fig. 2. The molecular packing of the crystal showing the dimer structure [symmetry code: (i)-x+1, -y+1, -z]
6-Bromo-1-butylindoline-2,3-dione top
Crystal data top
C12H12BrNO2F(000) = 1136
Mr = 282.14Dx = 1.580 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3677 reflections
a = 13.3097 (2) Åθ = 2.2–23.8°
b = 11.8793 (2) ŵ = 3.45 mm1
c = 16.2238 (2) ÅT = 296 K
β = 112.340 (1)°Plank, orange
V = 2372.62 (6) Å30.37 × 0.13 × 0.11 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
5170 independent reflections
Radiation source: fine-focus sealed tube2424 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 1.7°
phi and ω scansh = 1617
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1510
Tmin = 0.526, Tmax = 0.744l = 2020
16713 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0158P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max = 0.001
5170 reflectionsΔρmax = 0.39 e Å3
364 parametersΔρmin = 0.49 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00147 (12)
Crystal data top
C12H12BrNO2V = 2372.62 (6) Å3
Mr = 282.14Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.3097 (2) ŵ = 3.45 mm1
b = 11.8793 (2) ÅT = 296 K
c = 16.2238 (2) Å0.37 × 0.13 × 0.11 mm
β = 112.340 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5170 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2424 reflections with I > 2σ(I)
Tmin = 0.526, Tmax = 0.744Rint = 0.076
16713 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.39 e Å3
5170 reflectionsΔρmin = 0.49 e Å3
364 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.25474 (2)0.52247 (4)0.03130 (3)0.07546 (17)
O10.82928 (15)0.3064 (2)0.18511 (13)0.0649 (7)
O20.82426 (16)0.5497 (2)0.22161 (15)0.0682 (7)
N10.64300 (18)0.3303 (3)0.12570 (15)0.0448 (7)
C10.7490 (2)0.3648 (3)0.1675 (2)0.0477 (9)
C20.7445 (2)0.4919 (3)0.18633 (19)0.0475 (9)
C30.6286 (2)0.5203 (3)0.15321 (19)0.0431 (9)
C40.5754 (3)0.6195 (4)0.1517 (2)0.0519 (10)
H40.616 (2)0.688 (3)0.1810 (18)0.058 (10)*
C50.4628 (3)0.6193 (4)0.1150 (2)0.0535 (10)
H50.4240 (19)0.690 (3)0.1167 (16)0.047 (9)*
C60.4095 (2)0.5211 (4)0.0815 (2)0.0476 (9)
C70.4595 (2)0.4196 (4)0.0807 (2)0.0435 (9)
H70.4227 (18)0.351 (2)0.0576 (16)0.036 (9)*
C80.5720 (2)0.4213 (3)0.11826 (18)0.0382 (8)
C90.6102 (3)0.2182 (3)0.0965 (3)0.0504 (10)
H9A0.538 (2)0.218 (3)0.040 (2)0.073 (10)*
H9B0.659 (2)0.185 (3)0.081 (2)0.078 (13)*
C100.5921 (3)0.1458 (4)0.1651 (3)0.0640 (11)
H10B0.537 (2)0.185 (2)0.1859 (17)0.052 (9)*
H10A0.658 (2)0.147 (3)0.221 (2)0.070 (11)*
C110.5557 (4)0.0275 (4)0.1272 (3)0.0831 (14)
H11A0.613 (3)0.012 (3)0.121 (2)0.100*
H11B0.477 (3)0.032 (3)0.085 (2)0.100*
C120.5496 (3)0.0541 (4)0.1927 (3)0.1061 (15)
H12A0.62010.06280.23920.138 (10)*
H12B0.52530.12530.16410.138 (10)*
H12C0.49930.02760.21790.138 (10)*
Br20.25658 (2)0.10901 (4)0.09621 (3)0.07726 (17)
O30.32733 (16)0.1957 (2)0.03877 (14)0.0728 (8)
O40.30063 (18)0.2190 (2)0.13304 (15)0.0795 (8)
N20.14314 (18)0.1581 (2)0.08915 (16)0.0493 (7)
C210.2438 (3)0.1837 (3)0.0266 (2)0.0550 (10)
C220.2278 (3)0.1969 (3)0.0632 (2)0.0538 (9)
C230.1117 (2)0.1769 (3)0.0404 (2)0.0446 (8)
C240.0483 (3)0.1808 (3)0.0900 (3)0.0552 (10)
H240.084 (2)0.193 (3)0.1480 (19)0.060 (11)*
C250.0612 (3)0.1618 (3)0.0495 (3)0.0599 (10)
H250.1067 (18)0.164 (2)0.0805 (16)0.035 (8)*
C260.1047 (2)0.1379 (3)0.0399 (2)0.0513 (9)
C270.0439 (2)0.1332 (3)0.0925 (2)0.0501 (10)
H270.0727 (17)0.120 (2)0.1503 (16)0.034 (9)*
C280.0653 (2)0.1544 (3)0.0505 (2)0.0443 (8)
C290.1191 (3)0.1497 (4)0.1850 (2)0.0545 (11)
H29A0.1731 (19)0.188 (2)0.1991 (16)0.045 (9)*
H29B0.056 (2)0.198 (3)0.2144 (19)0.068 (11)*
C300.1031 (3)0.0315 (4)0.2208 (3)0.0592 (11)
H30B0.049 (2)0.010 (3)0.200 (2)0.077 (11)*
H30A0.162 (2)0.016 (3)0.195 (2)0.067 (12)*
C310.0728 (4)0.0318 (4)0.3219 (3)0.0771 (13)
H31B0.002 (3)0.071 (3)0.355 (2)0.112 (17)*
H31A0.133 (3)0.073 (3)0.333 (2)0.103 (14)*
C320.0463 (3)0.0819 (4)0.3617 (2)0.0941 (14)
H32A0.01220.11320.34830.129 (9)*
H32B0.02490.07660.42520.129 (9)*
H32C0.10900.12950.33760.129 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03753 (19)0.1118 (4)0.0741 (3)0.0122 (2)0.01790 (17)0.0168 (3)
O10.0405 (12)0.082 (2)0.0631 (16)0.0147 (13)0.0090 (11)0.0007 (14)
O20.0450 (13)0.081 (2)0.0662 (16)0.0181 (13)0.0076 (12)0.0127 (15)
N10.0369 (14)0.046 (2)0.0473 (17)0.0027 (15)0.0110 (12)0.0079 (17)
C10.0397 (19)0.060 (3)0.039 (2)0.0006 (19)0.0107 (16)0.001 (2)
C20.0372 (17)0.062 (3)0.038 (2)0.0066 (19)0.0086 (15)0.003 (2)
C30.0376 (17)0.049 (3)0.038 (2)0.0040 (19)0.0091 (15)0.005 (2)
C40.056 (2)0.045 (3)0.051 (2)0.007 (2)0.0165 (18)0.006 (2)
C50.053 (2)0.051 (3)0.056 (2)0.010 (2)0.0202 (19)0.002 (2)
C60.0317 (16)0.069 (3)0.039 (2)0.006 (2)0.0095 (15)0.005 (2)
C70.0361 (18)0.049 (3)0.042 (2)0.008 (2)0.0114 (16)0.003 (2)
C80.0375 (17)0.044 (2)0.0305 (18)0.0009 (18)0.0100 (14)0.0031 (18)
C90.052 (2)0.043 (3)0.053 (3)0.005 (2)0.016 (2)0.007 (2)
C100.072 (3)0.050 (3)0.064 (3)0.009 (2)0.019 (2)0.004 (3)
C110.087 (3)0.075 (4)0.077 (3)0.005 (3)0.020 (3)0.003 (3)
C120.121 (4)0.080 (4)0.107 (4)0.018 (3)0.032 (3)0.006 (4)
Br20.0453 (2)0.0909 (4)0.0969 (3)0.0008 (2)0.0285 (2)0.0097 (3)
O30.0427 (12)0.090 (2)0.0790 (17)0.0143 (13)0.0160 (12)0.0119 (15)
O40.0672 (15)0.094 (2)0.0514 (16)0.0202 (15)0.0066 (13)0.0106 (16)
N20.0385 (14)0.070 (2)0.0342 (16)0.0056 (14)0.0078 (12)0.0067 (16)
C210.048 (2)0.059 (3)0.049 (2)0.008 (2)0.0089 (18)0.010 (2)
C220.055 (2)0.042 (3)0.052 (2)0.0093 (19)0.0065 (18)0.004 (2)
C230.0489 (19)0.043 (2)0.036 (2)0.0037 (17)0.0100 (17)0.0023 (19)
C240.072 (3)0.050 (3)0.036 (2)0.003 (2)0.012 (2)0.003 (2)
C250.069 (3)0.063 (3)0.059 (3)0.007 (2)0.036 (2)0.003 (2)
C260.0444 (18)0.050 (3)0.057 (2)0.0006 (17)0.0175 (18)0.001 (2)
C270.0423 (19)0.064 (3)0.038 (2)0.0006 (18)0.0095 (18)0.006 (2)
C280.0395 (17)0.050 (2)0.038 (2)0.0023 (16)0.0089 (16)0.0028 (19)
C290.048 (2)0.070 (3)0.048 (2)0.007 (2)0.0202 (19)0.004 (2)
C300.057 (2)0.064 (3)0.058 (3)0.006 (2)0.023 (2)0.008 (3)
C310.103 (4)0.076 (4)0.065 (3)0.021 (3)0.046 (3)0.020 (3)
C320.116 (3)0.101 (4)0.076 (3)0.027 (3)0.048 (2)0.029 (3)
Geometric parameters (Å, º) top
Br1—C61.906 (3)Br2—C261.907 (3)
O1—C11.214 (3)O3—C211.209 (3)
O2—C21.210 (3)O4—C221.208 (3)
N1—C11.375 (3)N2—C211.373 (3)
N1—C81.411 (4)N2—C281.401 (3)
N1—C91.425 (4)N2—C291.467 (4)
C1—C21.545 (4)C21—C221.558 (4)
C2—C31.468 (4)C22—C231.465 (4)
C3—C41.370 (4)C23—C241.370 (4)
C3—C81.395 (4)C23—C281.391 (4)
C4—C51.387 (4)C24—C251.371 (4)
C4—H40.99 (3)C24—H240.89 (3)
C5—C61.366 (4)C25—C261.372 (4)
C5—H51.00 (3)C25—H250.92 (2)
C6—C71.379 (4)C26—C271.382 (4)
C7—C81.386 (4)C27—C281.374 (4)
C7—H70.95 (3)C27—H270.88 (2)
C9—C101.496 (5)C29—C301.503 (5)
C9—H9A1.05 (3)C29—H29A0.95 (3)
C9—H9B0.87 (3)C29—H29B0.98 (3)
C10—C111.536 (6)C30—C311.532 (5)
C10—H10B1.03 (3)C30—H30B1.04 (3)
C10—H10A0.99 (3)C30—H30A0.93 (3)
C11—C121.464 (6)C31—C321.481 (5)
C11—H11A0.94 (4)C31—H31B1.00 (4)
C11—H11B1.01 (3)C31—H31A1.01 (4)
C12—H12A0.9600C32—H32A0.9600
C12—H12B0.9600C32—H32B0.9600
C12—H12C0.9600C32—H32C0.9600
C1—N1—C8110.0 (3)C21—N2—C28110.9 (2)
C1—N1—C9124.8 (3)C21—N2—C29123.9 (3)
C8—N1—C9125.3 (3)C28—N2—C29124.9 (2)
O1—C1—N1126.3 (3)O3—C21—N2127.2 (3)
O1—C1—C2127.4 (3)O3—C21—C22127.0 (3)
N1—C1—C2106.3 (3)N2—C21—C22105.7 (3)
O2—C2—C3130.8 (4)O4—C22—C23131.7 (3)
O2—C2—C1123.8 (3)O4—C22—C21123.5 (3)
C3—C2—C1105.5 (3)C23—C22—C21104.7 (3)
C4—C3—C8121.5 (3)C24—C23—C28120.3 (3)
C4—C3—C2132.0 (3)C24—C23—C22132.2 (3)
C8—C3—C2106.5 (3)C28—C23—C22107.4 (3)
C3—C4—C5118.2 (4)C23—C24—C25119.6 (3)
C3—C4—H4120.7 (16)C23—C24—H24115.6 (18)
C5—C4—H4120.8 (16)C25—C24—H24124.7 (19)
C6—C5—C4119.1 (4)C24—C25—C26119.0 (3)
C6—C5—H5122.6 (15)C24—C25—H25122.3 (15)
C4—C5—H5118.3 (15)C26—C25—H25118.7 (15)
C5—C6—C7124.8 (3)C25—C26—C27123.4 (3)
C5—C6—Br1118.4 (3)C25—C26—Br2119.2 (3)
C7—C6—Br1116.8 (3)C27—C26—Br2117.4 (3)
C6—C7—C8115.3 (3)C28—C27—C26116.3 (3)
C6—C7—H7125.2 (15)C28—C27—H27120.7 (16)
C8—C7—H7119.5 (15)C26—C27—H27123.0 (16)
C7—C8—C3121.1 (3)C27—C28—C23121.4 (3)
C7—C8—N1127.1 (3)C27—C28—N2127.3 (3)
C3—C8—N1111.8 (3)C23—C28—N2111.3 (2)
N1—C9—C10113.9 (3)N2—C29—C30114.5 (3)
N1—C9—H9A110.8 (17)N2—C29—H29A110.0 (15)
C10—C9—H9A107.0 (17)C30—C29—H29A111.5 (17)
N1—C9—H9B111 (2)N2—C29—H29B106.1 (17)
C10—C9—H9B108 (2)C30—C29—H29B112.8 (18)
H9A—C9—H9B106 (3)H29A—C29—H29B101 (2)
C9—C10—C11110.1 (4)C29—C30—C31110.6 (4)
C9—C10—H10B108.8 (16)C29—C30—H30B109.3 (18)
C11—C10—H10B112.8 (16)C31—C30—H30B115.0 (17)
C9—C10—H10A109.7 (18)C29—C30—H30A115 (2)
C11—C10—H10A114.1 (19)C31—C30—H30A109 (2)
H10B—C10—H10A101 (2)H30B—C30—H30A98 (3)
C12—C11—C10114.3 (4)C32—C31—C30112.8 (4)
C12—C11—H11A91 (3)C32—C31—H31B100 (2)
C10—C11—H11A111 (2)C30—C31—H31B113 (2)
C12—C11—H11B101 (2)C32—C31—H31A116 (2)
C10—C11—H11B108 (2)C30—C31—H31A107 (2)
H11A—C11—H11B129 (3)H31B—C31—H31A109 (3)
C11—C12—H12A109.5C31—C32—H32A109.5
C11—C12—H12B109.5C31—C32—H32B109.5
H12A—C12—H12B109.5H32A—C32—H32B109.5
C11—C12—H12C109.5C31—C32—H32C109.5
H12A—C12—H12C109.5H32A—C32—H32C109.5
H12B—C12—H12C109.5H32B—C32—H32C109.5
C8—N1—C1—O1179.0 (3)C28—N2—C21—O3178.2 (4)
C9—N1—C1—O10.6 (5)C29—N2—C21—O35.0 (6)
C8—N1—C1—C21.6 (3)C28—N2—C21—C220.5 (4)
C9—N1—C1—C2180.0 (3)C29—N2—C21—C22173.6 (3)
O1—C1—C2—O20.6 (5)O3—C21—C22—O41.8 (6)
N1—C1—C2—O2178.8 (3)N2—C21—C22—O4179.6 (3)
O1—C1—C2—C3179.3 (3)O3—C21—C22—C23178.2 (3)
N1—C1—C2—C31.3 (3)N2—C21—C22—C230.4 (3)
O2—C2—C3—C40.2 (6)O4—C22—C23—C242.7 (7)
C1—C2—C3—C4180.0 (3)C21—C22—C23—C24177.3 (4)
O2—C2—C3—C8179.6 (3)O4—C22—C23—C28179.8 (4)
C1—C2—C3—C80.5 (3)C21—C22—C23—C280.2 (4)
C8—C3—C4—C50.7 (5)C28—C23—C24—C250.3 (5)
C2—C3—C4—C5180.0 (3)C22—C23—C24—C25177.6 (4)
C3—C4—C5—C60.5 (5)C23—C24—C25—C260.8 (5)
C4—C5—C6—C70.2 (5)C24—C25—C26—C270.8 (6)
C4—C5—C6—Br1179.9 (2)C24—C25—C26—Br2179.0 (3)
C5—C6—C7—C80.8 (5)C25—C26—C27—C280.2 (5)
Br1—C6—C7—C8179.6 (2)Br2—C26—C27—C28180.0 (2)
C6—C7—C8—C30.6 (4)C26—C27—C28—C231.3 (5)
C6—C7—C8—N1179.6 (3)C26—C27—C28—N2177.9 (3)
C4—C3—C8—C70.1 (5)C24—C23—C28—C271.4 (5)
C2—C3—C8—C7179.6 (3)C22—C23—C28—C27179.3 (3)
C4—C3—C8—N1179.1 (3)C24—C23—C28—N2177.9 (3)
C2—C3—C8—N10.4 (3)C22—C23—C28—N20.0 (4)
C1—N1—C8—C7179.6 (3)C21—N2—C28—C27179.0 (3)
C9—N1—C8—C71.2 (5)C29—N2—C28—C275.9 (5)
C1—N1—C8—C31.3 (3)C21—N2—C28—C230.3 (4)
C9—N1—C8—C3179.7 (3)C29—N2—C28—C23173.4 (3)
C1—N1—C9—C1089.8 (4)C21—N2—C29—C30106.6 (4)
C8—N1—C9—C1088.3 (4)C28—N2—C29—C3081.2 (4)
N1—C9—C10—C11179.3 (3)N2—C29—C30—C31177.1 (3)
C9—C10—C11—C12172.4 (4)C29—C30—C31—C32174.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O3i0.95 (3)2.44 (3)3.367 (5)165 (2)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC12H12BrNO2
Mr282.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.3097 (2), 11.8793 (2), 16.2238 (2)
β (°) 112.340 (1)
V3)2372.62 (6)
Z8
Radiation typeMo Kα
µ (mm1)3.45
Crystal size (mm)0.37 × 0.13 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.526, 0.744
No. of measured, independent and
observed [I > 2σ(I)] reflections
16713, 5170, 2424
Rint0.076
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.070, 0.93
No. of reflections5170
No. of parameters364
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.49

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
N1—C11.375 (3)N2—C211.373 (3)
N1—C81.411 (4)N2—C281.401 (3)
N1—C91.425 (4)N2—C291.467 (4)
C1—C21.545 (4)C21—C221.558 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O3i0.95 (3)2.44 (3)3.367 (5)165 (2)
Symmetry code: (i) x, y, z.
 

Acknowledgements

This work are supported by the PhD Foundation of the Ministry of Education of China and by the National Natural Science Foundation of China (grant No. 50673054).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGoldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294–305.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKopka, K., Faust, A., Keul, P., Wagner, S., Breyholz, H.-J., Holtke, C., Schober, O., Schafers, M. & Levkau, B. (2006). J. Med. Chem. 49, 6704–6715.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalenik, G. J., Koziol, A. E., Katritzky, A. R. & Fan, W.-Q. (1990). J. Chem. Soc. Chem. Commun. pp. 715–716.  CrossRef Web of Science Google Scholar
First citationPirrung, M. C., Pansare, S. V., Sarma, K. D., Keith, K. A. & Kern, E. R. (2005). J. Med. Chem. 48, 3045–3050.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, L., Liu, Y., Zhang, W., Wei, P., Huang, C., Pei, J., Yuan, Y. & Lai, L. (2006). J. Med. Chem. 49, 3440–3443.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds