organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o137-o138

1-(3-Phenyl­isoquinolin-1-yl)hydrazine

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: nawaz_f@yahoo.co.in

(Received 17 November 2008; accepted 10 December 2008; online 17 December 2008)

The title compound, C15H13N3, contains two independent mol­ecules in the asymmetric unit. The isoquinoline moiety and phenyl rings form dihedral angles of 4.38 (2) and 10.14 (3)° in the two independent mol­ecules. The crystal packing is stabilized by N—H⋯N mol­ecular dimers formed across a center of symmetry.

Related literature

For general background to hydrazine compounds, see: Broadhurst et al. (2001[Broadhurst, M. D., Michael, J. J., William, H. W. & Daryl, S. (2001). US Patent 6 235 787.]); Behrens (1999[Behrens, C. H. (1999). US Patent 4 942 163.]); Broadhurst (1991[Broadhurst, M. D. (1991). US Patent 5 070 097.]); Chao et al. (1999[Chao, Q., Deng, L., Shih, H., Leoni, L. M., Genini, D., Carson, D. A. & Cottam, H. B. (1999). J. Med. Chem. 2, 3860-3873.]); Kametani (1968[Kametani, T. (1968). The Chemistry of the Isoquinoline Alkaloids. Tokyo: Hirokawa and Amsterdam: Elsevier.]). For related crystal structures, see: Yang et al. (2008[Yang, Y., Yang, P., Zhang, C. & Wu, B. (2008). Anal. Sci. 24, x97-x98.]); Choudhury & Guru Row (2006[Choudhury, A. R. & Guru Row, T. N. (2006). CrystEngComm 8, 265- 274,.]); Choudhury et al. (2002[Choudhury, A. R., Urs, U. K., Guru Row, T. N. & Nagarajan, K. (2002). J. Mol. Struct. 605, 71-77.]); Hathwar et al. (2008[Hathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295.]). For bond-length data, see: Allen et al. (1998[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3

  • Mr = 235.28

  • Triclinic, [P \overline 1]

  • a = 6.672 (2) Å

  • b = 13.825 (4) Å

  • c = 14.934 (5) Å

  • α = 63.836 (5)°

  • β = 86.895 (6)°

  • γ = 82.106 (5)°

  • V = 1224.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 290 (2) K

  • 0.15 × 0.12 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.953, Tmax = 0.996

  • 12381 measured reflections

  • 4546 independent reflections

  • 2926 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.116

  • S = 1.02

  • 4546 reflections

  • 429 parameters

  • All H-atom parameters refined

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2′—H2′N⋯N3′i 0.91 (2) 2.15 (2) 2.967 (2) 151 (2)
N2—H2N⋯N3ii 0.90 (2) 2.20 (2) 3.027 (2) 152 (2)
N3′—H3′B⋯N1′iii 0.89 (2) 2.24 (2) 3.119 (2) 169 (2)
N3—H3A⋯N1iv 0.92 (2) 2.26 (2) 3.170 (3) 168 (2)
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z+1; (iii) -x+1, -y, -z; (iv) -x+2, -y, -z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia,1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound belongs to the class isoquinolines. Isoquinolines and isoquinolinones are an integral part of many naturally occurring fused heterocycles and find applications in synthetic and pharmaceutical chemistry (Kametani et al., 1968). Isoquinolinones and isoquinoline amines were reported as cancer chemotherapeutic agents (Behrens, 1999) whereas quinolyl and isoquinolyl derivatives have been reported as insecticidal compounds (Broadhurst, 1991). 3-Substituted isoquinolines are of potent use in medicine (Chao, et al., 1999) and in general, hydrazine derivatives can be used as medicaments (Broadhurst et al., 2001). Choudhury, et al. (2002, 2006) reported crystal structures of substituted isoquinolines while Hathwar, et al. (2008) reports the crystal structure of an isoquinolinyl diselenide.

The asymmetric unit of the crystal structure of the title compound contains two independent molecules (Fig. 1). The isoquinoline moiety and phenyl rings form dihedral angles of 4.38 (2) and 10.14 (3)° ,respectively, in the two independent molecules. All bond lengths and angles are normal (Allen et al., 1998). The packing (Fig. 2) is consolidated by four N—H···N hydrogen bonds. All the four N—H···N hydrogen bonds generate dimers across centres of symmetry (Table 1) resulting in tight molecular packing in the crystal. The N2'-H2'N···N3' and the N2—H2N···N3 hydrogen bonds form a R22(6) motif whereas the N3'-H3'B···N1' and the N3—H3A···N1 hydrogen bond dimers form a R22(10) motif (Bernstein et al., 1995) in the crystal (Fig. 2).

Related literature top

For general background to hydrazine compounds, see: Broadhurst et al. (2001);Behrens (1999); Broadhurst (1991); Chao et al. (1999); Kametani (1968). For related crystal structures, see: Yang et al. (2008); Choudhury & Guru Row (2006); Choudhury et al. (2002); Hathwar et al. (2008). For bond-length data, see: Allen et al. (1998). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The solution of 1-chloro-3-phenylisoquioline in ethanol was treated with hydrazine hydrate and stirred at 323 K for 3hr. The product was filtered. The solid was washed with water and diethyl ether and dried under vacuum. Single crystals of the title compound were obtained via recrystalization from a dichloromethane solution.

Refinement top

All the H atoms in the title compound were located from difference electron density maps and refined isotropically resulting in C—H and N—H bond lenghts of 0.91 (4) - 1.02 (2)Å and 0.89 (2) - 0.97 (3)Å, respectively.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia,1999) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the asymmetric unit of (I) with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing excerpt from the crystal with dotted lines indicating intermolecular N—H···N hydrogen bonds. H atoms not involved in the interactions are omitted for clarity.
1-(3-Phenylisoquinolin-1-yl)hydrazine top
Crystal data top
C15H13N3Z = 4
Mr = 235.28F(000) = 496
Triclinic, P1Dx = 1.276 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.672 (2) ÅCell parameters from 832 reflections
b = 13.825 (4) Åθ = 1.7–25.3°
c = 14.934 (5) ŵ = 0.08 mm1
α = 63.836 (5)°T = 290 K
β = 86.895 (6)°Needle, colourless
γ = 82.106 (5)°0.15 × 0.12 × 0.05 mm
V = 1224.5 (7) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4546 independent reflections
Radiation source: fine-focus sealed tube2926 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.953, Tmax = 0.996k = 1616
12381 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0567P)2]
where P = (Fo2 + 2Fc2)/3
4546 reflections(Δ/σ)max < 0.001
429 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C15H13N3γ = 82.106 (5)°
Mr = 235.28V = 1224.5 (7) Å3
Triclinic, P1Z = 4
a = 6.672 (2) ÅMo Kα radiation
b = 13.825 (4) ŵ = 0.08 mm1
c = 14.934 (5) ÅT = 290 K
α = 63.836 (5)°0.15 × 0.12 × 0.05 mm
β = 86.895 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4546 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2926 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.996Rint = 0.032
12381 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.116All H-atom parameters refined
S = 1.02Δρmax = 0.14 e Å3
4546 reflectionsΔρmin = 0.17 e Å3
429 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.91992 (19)0.17183 (10)0.48294 (10)0.0386 (3)
N20.6714 (2)0.05976 (11)0.52799 (11)0.0433 (4)
N30.7300 (2)0.02645 (15)0.45200 (14)0.0471 (4)
N1'0.4205 (2)0.13567 (10)0.03997 (10)0.0391 (3)
N2'0.1689 (2)0.07962 (11)0.01722 (11)0.0466 (4)
N3'0.2325 (2)0.03027 (12)0.04958 (15)0.0495 (4)
C10.7552 (2)0.14107 (12)0.53468 (12)0.0366 (4)
C21.0076 (2)0.25388 (13)0.48758 (12)0.0406 (4)
C30.9290 (3)0.30370 (15)0.54472 (14)0.0529 (5)
C40.6656 (4)0.32080 (18)0.66201 (16)0.0718 (7)
C50.4979 (4)0.28801 (19)0.71627 (17)0.0768 (7)
C60.4084 (4)0.20448 (17)0.71345 (16)0.0666 (6)
C70.4885 (3)0.15463 (16)0.65585 (14)0.0515 (5)
C80.6624 (2)0.18705 (12)0.59912 (12)0.0395 (4)
C90.7543 (3)0.27114 (14)0.60246 (13)0.0482 (5)
C101.1910 (2)0.28398 (13)0.42535 (12)0.0431 (4)
C111.2553 (3)0.23496 (16)0.36341 (13)0.0523 (5)
C121.4255 (3)0.26016 (18)0.30579 (15)0.0639 (6)
C131.5362 (4)0.33508 (19)0.30874 (17)0.0679 (6)
C141.4761 (3)0.38509 (18)0.36893 (17)0.0655 (6)
C151.3048 (3)0.36044 (16)0.42676 (15)0.0561 (5)
C1'0.2527 (2)0.16171 (13)0.01268 (12)0.0385 (4)
C2'0.5085 (2)0.21556 (13)0.04790 (12)0.0406 (4)
C3'0.4252 (3)0.32116 (15)0.00313 (14)0.0531 (5)
C4'0.1531 (4)0.45988 (17)0.10239 (18)0.0780 (7)
C5'0.0202 (4)0.48553 (19)0.15637 (19)0.0876 (8)
C6'0.1088 (4)0.40594 (18)0.16610 (16)0.0735 (7)
C7'0.0217 (3)0.30071 (16)0.12234 (14)0.0547 (5)
C8'0.1569 (3)0.27129 (13)0.06543 (12)0.0411 (4)
C9'0.2471 (3)0.35185 (14)0.05511 (13)0.0502 (5)
C10'0.6945 (2)0.17691 (14)0.11012 (12)0.0412 (4)
C11'0.7519 (3)0.06689 (16)0.16619 (14)0.0525 (5)
C12'0.9251 (3)0.02867 (18)0.22499 (15)0.0599 (5)
C13'1.0450 (3)0.09997 (19)0.22820 (15)0.0587 (5)
C14'0.9911 (3)0.2093 (2)0.17264 (15)0.0608 (6)
C15'0.8188 (3)0.24744 (17)0.11461 (15)0.0532 (5)
H2N0.542 (3)0.0483 (14)0.5454 (13)0.060 (6)*
H30.992 (3)0.3609 (14)0.5471 (12)0.056 (5)*
H3A0.843 (3)0.0248 (16)0.4726 (14)0.075 (7)*
H3B0.761 (3)0.0880 (17)0.3956 (15)0.078 (7)*
H40.733 (3)0.3797 (16)0.6607 (14)0.082 (7)*
H50.438 (3)0.3227 (17)0.7544 (16)0.094 (7)*
H2'N0.038 (3)0.0910 (13)0.0365 (12)0.053 (5)*
H60.286 (3)0.1827 (16)0.7500 (15)0.084 (7)*
H3'A0.269 (3)0.0320 (14)0.1126 (14)0.065 (6)*
H3'B0.341 (3)0.0536 (16)0.0238 (15)0.076 (7)*
H70.423 (3)0.1003 (14)0.6516 (12)0.055 (5)*
H111.172 (3)0.1806 (14)0.3645 (13)0.062 (5)*
H121.470 (3)0.2194 (16)0.2639 (15)0.090 (7)*
H131.658 (3)0.3473 (17)0.2734 (16)0.095 (8)*
H141.549 (3)0.4356 (15)0.3753 (13)0.069 (6)*
H151.263 (3)0.3971 (14)0.4688 (13)0.059 (6)*
H3'0.492 (3)0.3731 (15)0.0110 (13)0.064 (6)*
H4'0.219 (3)0.5136 (17)0.0959 (14)0.082 (7)*
H5'0.082 (4)0.5558 (19)0.1851 (17)0.102 (8)*
H6'0.234 (3)0.4247 (16)0.2025 (15)0.080 (7)*
H7'0.081 (3)0.2459 (15)0.1303 (13)0.065 (6)*
H11'0.661 (3)0.0177 (14)0.1642 (12)0.057 (5)*
H12'0.964 (3)0.0520 (18)0.2615 (15)0.092 (7)*
H13'1.164 (3)0.0723 (15)0.2692 (14)0.070 (6)*
H14'1.073 (3)0.2590 (16)0.1730 (14)0.078 (6)*
H15'0.786 (3)0.3249 (15)0.0727 (14)0.069 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0333 (8)0.0399 (8)0.0440 (8)0.0050 (6)0.0015 (6)0.0194 (7)
N20.0385 (9)0.0477 (9)0.0538 (9)0.0105 (7)0.0057 (7)0.0306 (8)
N30.0416 (9)0.0510 (10)0.0609 (11)0.0049 (8)0.0013 (8)0.0358 (9)
N1'0.0349 (8)0.0393 (8)0.0494 (8)0.0077 (6)0.0027 (7)0.0245 (7)
N2'0.0365 (9)0.0386 (9)0.0688 (11)0.0028 (7)0.0065 (8)0.0271 (8)
N3'0.0420 (10)0.0382 (9)0.0720 (12)0.0014 (7)0.0050 (9)0.0281 (9)
C10.0341 (9)0.0347 (9)0.0398 (9)0.0008 (7)0.0057 (8)0.0155 (8)
C20.0388 (10)0.0401 (10)0.0416 (10)0.0052 (8)0.0054 (8)0.0161 (8)
C30.0572 (12)0.0539 (12)0.0606 (12)0.0214 (10)0.0080 (10)0.0337 (10)
C40.0929 (18)0.0715 (15)0.0772 (15)0.0321 (13)0.0289 (13)0.0532 (13)
C50.0979 (19)0.0770 (16)0.0769 (16)0.0248 (14)0.0364 (14)0.0532 (14)
C60.0735 (15)0.0659 (14)0.0659 (14)0.0203 (12)0.0312 (12)0.0341 (12)
C70.0539 (12)0.0495 (11)0.0541 (12)0.0111 (10)0.0095 (9)0.0250 (10)
C80.0416 (10)0.0374 (9)0.0368 (9)0.0013 (8)0.0019 (8)0.0145 (8)
C90.0549 (12)0.0462 (11)0.0496 (11)0.0100 (9)0.0041 (9)0.0259 (9)
C100.0393 (10)0.0408 (10)0.0415 (10)0.0048 (8)0.0055 (8)0.0106 (8)
C110.0525 (12)0.0569 (12)0.0458 (11)0.0127 (10)0.0048 (9)0.0198 (10)
C120.0592 (14)0.0723 (15)0.0525 (13)0.0113 (11)0.0097 (10)0.0205 (12)
C130.0505 (14)0.0723 (15)0.0578 (14)0.0092 (12)0.0081 (11)0.0081 (12)
C140.0508 (13)0.0575 (13)0.0733 (15)0.0191 (11)0.0029 (12)0.0115 (12)
C150.0510 (12)0.0508 (12)0.0652 (14)0.0133 (10)0.0005 (10)0.0223 (11)
C1'0.0354 (10)0.0413 (10)0.0454 (10)0.0068 (8)0.0065 (8)0.0252 (8)
C2'0.0408 (10)0.0411 (10)0.0447 (10)0.0115 (8)0.0077 (8)0.0223 (8)
C3'0.0611 (13)0.0420 (11)0.0600 (12)0.0146 (10)0.0037 (10)0.0230 (10)
C4'0.1021 (19)0.0388 (12)0.0861 (17)0.0059 (12)0.0263 (15)0.0189 (12)
C5'0.115 (2)0.0430 (14)0.0886 (18)0.0131 (14)0.0384 (16)0.0160 (13)
C6'0.0877 (18)0.0566 (14)0.0677 (15)0.0104 (13)0.0303 (13)0.0215 (12)
C7'0.0602 (13)0.0500 (12)0.0537 (12)0.0013 (10)0.0095 (10)0.0231 (10)
C8'0.0450 (10)0.0400 (10)0.0381 (10)0.0051 (8)0.0030 (8)0.0174 (8)
C9'0.0620 (13)0.0359 (10)0.0505 (11)0.0080 (9)0.0019 (10)0.0161 (9)
C10'0.0406 (10)0.0492 (11)0.0424 (10)0.0116 (8)0.0061 (8)0.0269 (9)
C11'0.0573 (13)0.0514 (12)0.0513 (12)0.0153 (10)0.0051 (10)0.0217 (10)
C12'0.0654 (14)0.0609 (14)0.0523 (12)0.0064 (11)0.0107 (10)0.0232 (11)
C13'0.0533 (13)0.0777 (16)0.0502 (12)0.0078 (12)0.0060 (10)0.0322 (12)
C14'0.0571 (13)0.0779 (16)0.0612 (13)0.0257 (12)0.0016 (11)0.0380 (13)
C15'0.0556 (12)0.0543 (13)0.0575 (13)0.0162 (10)0.0002 (10)0.0288 (11)
Geometric parameters (Å, º) top
N1—C11.3163 (19)C12—C131.369 (3)
N1—C21.3748 (19)C12—H121.02 (2)
N2—C11.3652 (19)C13—C141.371 (3)
N2—N31.420 (2)C13—H130.94 (2)
N2—H2N0.904 (18)C14—C151.381 (3)
N3—H3A0.920 (19)C14—H140.94 (2)
N3—H3B0.93 (2)C15—H150.976 (17)
N1'—C1'1.317 (2)C1'—C8'1.435 (2)
N1'—C2'1.3712 (19)C2'—C3'1.358 (2)
N2'—C1'1.360 (2)C2'—C10'1.481 (2)
N2'—N3'1.420 (2)C3'—C9'1.413 (3)
N2'—H2'N0.903 (18)C3'—H3'0.946 (18)
N3'—H3'A0.976 (19)C4'—C5'1.360 (3)
N3'—H3'B0.89 (2)C4'—C9'1.408 (3)
C1—C81.442 (2)C4'—H4'0.96 (2)
C2—C31.359 (2)C5'—C6'1.382 (3)
C2—C101.487 (2)C5'—H5'0.92 (2)
C3—C91.414 (2)C6'—C7'1.361 (3)
C3—H30.959 (17)C6'—H6'0.96 (2)
C4—C51.353 (3)C7'—C8'1.407 (2)
C4—C91.408 (2)C7'—H7'0.955 (18)
C4—H40.98 (2)C8'—C9'1.404 (2)
C5—C61.388 (3)C10'—C11'1.383 (2)
C5—H50.94 (2)C10'—C15'1.389 (2)
C6—C71.368 (3)C11'—C12'1.386 (3)
C6—H60.96 (2)C11'—H11'0.983 (17)
C7—C81.402 (2)C12'—C13'1.370 (3)
C7—H70.945 (17)C12'—H12'1.00 (2)
C8—C91.407 (2)C13'—C14'1.370 (3)
C10—C111.389 (2)C13'—H13'0.95 (2)
C10—C151.391 (2)C14'—C15'1.374 (3)
C11—C121.375 (3)C14'—H14'0.94 (2)
C11—H110.988 (18)C15'—H15'0.972 (18)
C1—N1—C2119.22 (14)C14—C13—H13120.8 (13)
C1—N2—N3121.14 (14)C13—C14—C15120.6 (2)
C1—N2—H2N122.1 (11)C13—C14—H14123.3 (12)
N3—N2—H2N109.5 (11)C15—C14—H14116.1 (12)
N2—N3—H3A109.6 (12)C14—C15—C10120.6 (2)
N2—N3—H3B107.2 (12)C14—C15—H15119.7 (11)
H3A—N3—H3B109.9 (18)C10—C15—H15119.8 (11)
C1'—N1'—C2'119.52 (14)N1'—C1'—N2'117.49 (15)
C1'—N2'—N3'120.66 (15)N1'—C1'—C8'123.38 (14)
C1'—N2'—H2'N119.4 (11)N2'—C1'—C8'119.13 (15)
N3'—N2'—H2'N112.8 (11)C3'—C2'—N1'121.27 (16)
N2'—N3'—H3'A107.7 (11)C3'—C2'—C10'123.79 (16)
N2'—N3'—H3'B108.0 (13)N1'—C2'—C10'114.93 (15)
H3'A—N3'—H3'B109.2 (17)C2'—C3'—C9'120.53 (17)
N1—C1—N2117.71 (15)C2'—C3'—H3'117.9 (11)
N1—C1—C8123.47 (14)C9'—C3'—H3'121.5 (11)
N2—C1—C8118.81 (15)C5'—C4'—C9'121.0 (2)
C3—C2—N1121.64 (16)C5'—C4'—H4'122.4 (12)
C3—C2—C10123.14 (16)C9'—C4'—H4'116.6 (12)
N1—C2—C10115.22 (15)C4'—C5'—C6'120.7 (2)
C2—C3—C9120.43 (17)C4'—C5'—H5'120.1 (15)
C2—C3—H3120.7 (10)C6'—C5'—H5'119.2 (15)
C9—C3—H3118.9 (10)C7'—C6'—C5'120.1 (2)
C5—C4—C9121.3 (2)C7'—C6'—H6'119.9 (12)
C5—C4—H4123.4 (12)C5'—C6'—H6'120.0 (12)
C9—C4—H4115.3 (12)C6'—C7'—C8'120.6 (2)
C4—C5—C6120.2 (2)C6'—C7'—H7'120.2 (11)
C4—C5—H5120.7 (14)C8'—C7'—H7'119.2 (11)
C6—C5—H5119.0 (14)C9'—C8'—C7'119.44 (17)
C7—C6—C5120.5 (2)C9'—C8'—C1'116.33 (15)
C7—C6—H6119.1 (12)C7'—C8'—C1'124.19 (16)
C5—C6—H6120.4 (12)C8'—C9'—C4'118.12 (19)
C6—C7—C8120.42 (19)C8'—C9'—C3'118.93 (16)
C6—C7—H7120.1 (10)C4'—C9'—C3'122.94 (18)
C8—C7—H7119.4 (10)C11'—C10'—C15'117.18 (17)
C7—C8—C9119.24 (16)C11'—C10'—C2'120.30 (16)
C7—C8—C1124.44 (16)C15'—C10'—C2'122.51 (17)
C9—C8—C1116.31 (15)C10'—C11'—C12'121.42 (18)
C8—C9—C4118.37 (18)C10'—C11'—H11'116.7 (10)
C8—C9—C3118.91 (16)C12'—C11'—H11'121.9 (10)
C4—C9—C3122.71 (18)C13'—C12'—C11'120.2 (2)
C11—C10—C15117.55 (18)C13'—C12'—H12'121.5 (12)
C11—C10—C2120.17 (16)C11'—C12'—H12'118.2 (12)
C15—C10—C2122.27 (17)C12'—C13'—C14'119.1 (2)
C12—C11—C10121.6 (2)C12'—C13'—H13'119.1 (12)
C12—C11—H11122.8 (10)C14'—C13'—H13'121.8 (12)
C10—C11—H11115.6 (10)C13'—C14'—C15'120.8 (2)
C13—C12—C11120.0 (2)C13'—C14'—H14'120.1 (12)
C13—C12—H12121.3 (12)C15'—C14'—H14'119.1 (12)
C11—C12—H12118.6 (12)C14'—C15'—C10'121.3 (2)
C12—C13—C14119.8 (2)C14'—C15'—H15'119.9 (11)
C12—C13—H13119.3 (13)C10'—C15'—H15'118.8 (11)
C2—N1—C1—N2179.67 (14)C2'—N1'—C1'—N2'179.00 (14)
C2—N1—C1—C81.7 (2)C2'—N1'—C1'—C8'1.6 (2)
N3—N2—C1—N114.0 (2)N3'—N2'—C1'—N1'14.0 (2)
N3—N2—C1—C8167.31 (15)N3'—N2'—C1'—C8'166.61 (15)
C1—N1—C2—C30.4 (2)C1'—N1'—C2'—C3'0.5 (2)
C1—N1—C2—C10179.08 (13)C1'—N1'—C2'—C10'179.06 (14)
N1—C2—C3—C90.7 (3)N1'—C2'—C3'—C9'1.5 (3)
C10—C2—C3—C9179.86 (15)C10'—C2'—C3'—C9'179.91 (15)
C9—C4—C5—C60.6 (4)C9'—C4'—C5'—C6'0.1 (4)
C4—C5—C6—C70.1 (4)C4'—C5'—C6'—C7'0.7 (4)
C5—C6—C7—C80.2 (3)C5'—C6'—C7'—C8'1.1 (3)
C6—C7—C8—C90.3 (3)C6'—C7'—C8'—C9'0.9 (3)
C6—C7—C8—C1178.62 (17)C6'—C7'—C8'—C1'176.68 (18)
N1—C1—C8—C7179.17 (15)N1'—C1'—C8'—C9'2.6 (2)
N2—C1—C8—C70.6 (2)N2'—C1'—C8'—C9'177.99 (15)
N1—C1—C8—C91.9 (2)N1'—C1'—C8'—C7'179.72 (16)
N2—C1—C8—C9179.52 (14)N2'—C1'—C8'—C7'0.3 (2)
C7—C8—C9—C40.9 (3)C7'—C8'—C9'—C4'0.3 (3)
C1—C8—C9—C4178.12 (17)C1'—C8'—C9'—C4'177.49 (17)
C7—C8—C9—C3179.72 (16)C7'—C8'—C9'—C3'179.33 (17)
C1—C8—C9—C30.7 (2)C1'—C8'—C9'—C3'1.6 (2)
C5—C4—C9—C81.0 (3)C5'—C4'—C9'—C8'0.1 (3)
C5—C4—C9—C3179.8 (2)C5'—C4'—C9'—C3'178.9 (2)
C2—C3—C9—C80.5 (3)C2'—C3'—C9'—C8'0.4 (3)
C2—C3—C9—C4179.28 (18)C2'—C3'—C9'—C4'179.37 (19)
C3—C2—C10—C11175.55 (17)C3'—C2'—C10'—C11'169.50 (17)
N1—C2—C10—C113.9 (2)N1'—C2'—C10'—C11'9.0 (2)
C3—C2—C10—C154.8 (3)C3'—C2'—C10'—C15'11.0 (3)
N1—C2—C10—C15175.73 (15)N1'—C2'—C10'—C15'170.47 (15)
C15—C10—C11—C120.4 (3)C15'—C10'—C11'—C12'0.5 (3)
C2—C10—C11—C12179.27 (16)C2'—C10'—C11'—C12'180.00 (16)
C10—C11—C12—C130.1 (3)C10'—C11'—C12'—C13'0.4 (3)
C11—C12—C13—C140.3 (3)C11'—C12'—C13'—C14'0.1 (3)
C12—C13—C14—C150.1 (3)C12'—C13'—C14'—C15'0.3 (3)
C13—C14—C15—C100.4 (3)C13'—C14'—C15'—C10'0.2 (3)
C11—C10—C15—C140.6 (3)C11'—C10'—C15'—C14'0.2 (3)
C2—C10—C15—C14179.05 (16)C2'—C10'—C15'—C14'179.68 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N3i0.91 (2)2.15 (2)2.967 (2)151 (2)
N2—H2N···N3ii0.90 (2)2.20 (2)3.027 (2)152 (2)
N3—H3B···N1iii0.89 (2)2.24 (2)3.119 (2)169 (2)
N3—H3A···N1iv0.92 (2)2.26 (2)3.170 (3)168 (2)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H13N3
Mr235.28
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)6.672 (2), 13.825 (4), 14.934 (5)
α, β, γ (°)63.836 (5), 86.895 (6), 82.106 (5)
V3)1224.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.15 × 0.12 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.953, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
12381, 4546, 2926
Rint0.032
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.116, 1.02
No. of reflections4546
No. of parameters429
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.14, 0.17

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia,1999) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2'—H2'N···N3'i0.91 (2)2.15 (2)2.967 (2)151 (2)
N2—H2N···N3ii0.90 (2)2.20 (2)3.027 (2)152 (2)
N3'—H3'B···N1'iii0.89 (2)2.24 (2)3.119 (2)169 (2)
N3—H3A···N1iv0.92 (2)2.26 (2)3.170 (3)168 (2)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x+2, y, z+1.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at IISc. We thank Prof T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  Google Scholar
First citationBehrens, C. H. (1999). US Patent 4 942 163.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBroadhurst, M. D. (1991). US Patent 5 070 097.  Google Scholar
First citationBroadhurst, M. D., Michael, J. J., William, H. W. & Daryl, S. (2001). US Patent 6 235 787.  Google Scholar
First citationBruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChao, Q., Deng, L., Shih, H., Leoni, L. M., Genini, D., Carson, D. A. & Cottam, H. B. (1999). J. Med. Chem. 2, 3860–3873.  Web of Science CrossRef Google Scholar
First citationChoudhury, A. R. & Guru Row, T. N. (2006). CrystEngComm 8, 265– 274,.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoudhury, A. R., Urs, U. K., Guru Row, T. N. & Nagarajan, K. (2002). J. Mol. Struct. 605, 71–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKametani, T. (1968). The Chemistry of the Isoquinoline Alkaloids. Tokyo: Hirokawa and Amsterdam: Elsevier.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationYang, Y., Yang, P., Zhang, C. & Wu, B. (2008). Anal. Sci. 24, x97–x98.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o137-o138
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds