organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Bis(2-meth­oxy­phen­yl)tetra­zolium-5-thiol­ate–acetone–di­chloro­methane (1/0.4/0.1)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa, and bDepartment of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Aucklandpark, Johannesburg 2006, South Africa
*Correspondence e-mail: veschwkg.sci@ufs.ac.za

(Received 17 October 2008; accepted 25 November 2008; online 3 December 2008)

In the title compound, C15H14N4O2S·0.4C3H6O·0.1CH2Cl2, two benzene rings in the ortho-meth­oxy dehydro­dithizone (omd) mol­ecule are twisted out of the tetra­zole plane with the meth­oxy groups in a cis orientation relative to the tetrazole backbone. The acetone is located on a special position. The dihedral angles formed by the benzene rings with the central five-membered ring are 63.14 (8) and 57.06 (6)°. In the crystal structure, the relatively short distance of 3.886 (3) Å between the centroids of benzene rings from two neighbouring omd mol­ecules indicate ππ stacking inter­actions.

Related literature

For general background, see: Al-Salihy & Freiser (1970[Al-Salihy, A. R. & Freiser, H. (1970). Talanta, 17, 182-185.]); Irving (1977[Irving, H. M. N. H. (1977). Dithizone. Analytical Sciences Monographs No. 5. London: The Chemical Society.]); Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For details of the synthesis, see: Mirkhalaf et al. (1998[Mirkhalaf, F., Whittaker, D. & Schiffrin, D. J. (1998). J. Electroanal. Chem. 452, 203-213.]); Irving et al. (1971[Irving, H. M. N. H., Kiwan, A. M., Rupainwar, D. C. & Sahota, S. S. (1971). Anal. Chim. Acta, 56, 205-220.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N4O2S·0.4C3H6O·0.1CH2Cl2

  • Mr = 346.09

  • Orthorhombic, P b c n

  • a = 19.5069 (13) Å

  • b = 12.5245 (7) Å

  • c = 13.2780 (10) Å

  • V = 3244.0 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 (2) K

  • 0.33 × 0.12 × 0.11 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.919, Tmax = 0.972

  • 10890 measured reflections

  • 4013 independent reflections

  • 2571 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.169

  • S = 1.06

  • 4013 reflections

  • 238 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.57 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The effect of electron donating (–CH3) and withdrawing groups (F, Cl, Br, I) on the phenyl rings of dithizone, (PhNHN)2CS, was investigated by Al-Salihy and Freiser (1970), and expressed in terms of acid dissociation constants. In view of dithizone's extensive applications in the field of heavy metals analyses (Irving, 1977) we have decided to execute an extended investigation of the above by, amongst others, also including methoxy groups substituted on the different phenyl ring positions. Growing suitable crystals for X-ray diffraction of the ortho-methoxy derivative of dithizone (1 on Scheme 2) proved to be problematic. However, oxidation of the same, resulting in the zwitter-ionic tetrazolium salt of the title compound, ortho-methoxy dehydrodithizone, (2), yielded a product that readily crystallizes in polar solvent mixtures. Herewith we present the crystal structure of the title compound (2).

In (2) (Fig. 1), all bond lengths and angles are normal (Allen, 2002). The phenyl rings adopt a non-parallel arrangement with the dehydrodithizone backbone with dihedral angles of 63.14 (8)° and 57.06 (6)° for rings C11—C16 and C21—C26 respectively, mainly due to their close proximities on the tetrazole moiety. The preferred orientation is supported by interaction of one of the methoxy moieties to N1 and the π-π stacking of the phenyl rings of C21—C26 situated around an inversion center (centroid to centroid distance = 3.886 Å, Table 1).

Related literature top

For general background, see: Al-Salihy & Freiser (1970); Irving (1977); Allen (2002). For details of the synthesis, see: Mirkhalaf et al. (1998); Irving et al. (1971).

Experimental top

Reagents were purchased from Sigma-Aldrich, and solvents (AR) from Merck, and used without further purification. The ortho-methoxy derivative of dithizone, (o-MeOPhNHN)2CS, 1, was prepared from 2-methoxyaniline and ammonium sulfide according to the procedure reported by Mirkhalaf et al., 1998. The synthesis of the title compound, ortho-methoxy dehydrodithizone, 2, was done according to a method by Irving et al., (1971) as follows. A solution of (o-MeOPhNHN)2CS (0.2 g, 0.6 mmol) in dichloromethane (60 ml) was stirred (2 hrs) with a solution of potassium hexacyanoiron (III) (0.48 g) and potassium carbonate (0.46 g) in water (20 ml). The organic layer was removed, washed with water, and the solvent removed under reduced pressure. The product residue, on recrystallization from a minimum dichloromethane in acetone and water, gave 0.098 g orange-brown crystals of 2. Yield: 49%

Analytical data: M.p 192 ° C λmax(acetone) 445.6 nm (ε = 1360 dm3 mol-1 cm-1) δH (300 MHz, (CD3)2SO, 7.10 (1 H, t, p-C6H5), 7.21 (1 H, d, m-C6H5), 7.61 (1 H, t, m-C6H5), 7.76 (1 H, d, o-C6H5).

Refinement top

The aromatic, methylene and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95 - 0.99 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for aromatic and methylene, and Uiso(H) = 1.5Ueq(C) for methyl protons. Torsion angles for methyl protons on the dehydrodithizone were refined from electron density, while those on the acetone solvent molecule as staggered. Large anisotropic displacements were observed on the proposed acetone solvent molecule which was subsequently treated as disordered. From this we were able to detect a minor component of dichloromethane solvate as well. The occupancy ratios for these two solvent molecules were obtained from free-refining their occupancies, and later fixing these values to 80:10 for acetone and dichloromethane, respectively. The positions of the –CH3 and –CH2 moieties of the two solvents could not be defined clearly and was subsequently refined as a fully occupied carbon site. The final result is a acetone molecule lying on a twofold rotation axis with the dichloromethane occupying two positions.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (2) with 30% probability displacement ellipsoids. Accented lettering indicate atoms generated by symmetry (2 - x, y, 3/2 - z).
[Figure 2] Fig. 2. The formation of the title compound.
2,3-Bis(2-methoxyphenyl)tetrazolium-5-thiolate–acetone–dichloromethane (1/0.4/0.1) top
Crystal data top
C15H14N4O2S·0.4C3H6O·0.1CH2Cl2F(000) = 1448
Mr = 346.09Dx = 1.417 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 1519 reflections
a = 19.5069 (13) Åθ = 2.5–24.4°
b = 12.5245 (7) ŵ = 0.25 mm1
c = 13.278 (1) ÅT = 100 K
V = 3244.0 (4) Å3Needle, red
Z = 80.33 × 0.12 × 0.11 mm
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
4013 independent reflections
Radiation source: fine-focus sealed tube2571 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 8.4 pixels mm-1θmax = 28.3°, θmin = 2.1°
ϕ and ω scansh = 1526
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1216
Tmin = 0.919, Tmax = 0.972l = 1317
10890 measured reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.0769P)2 + 1.158P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.169(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.84 e Å3
4013 reflectionsΔρmin = 0.57 e Å3
238 parameters
Crystal data top
C15H14N4O2S·0.4C3H6O·0.1CH2Cl2V = 3244.0 (4) Å3
Mr = 346.09Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 19.5069 (13) ŵ = 0.25 mm1
b = 12.5245 (7) ÅT = 100 K
c = 13.278 (1) Å0.33 × 0.12 × 0.11 mm
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
4013 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2571 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.972Rint = 0.051
10890 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0592 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.06Δρmax = 0.84 e Å3
4013 reflectionsΔρmin = 0.57 e Å3
238 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 200 s/frame. A total of 358 frames were collected with a frame width of 0.5° covering up to θ = 28.30° with 99.2% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.94113 (4)0.35569 (6)0.39602 (6)0.0240 (2)
N10.92670 (12)0.20582 (17)0.25103 (17)0.0175 (5)
N20.90050 (11)0.20201 (16)0.16004 (17)0.0164 (5)
N30.87217 (12)0.29604 (17)0.13628 (18)0.0175 (5)
N40.87976 (12)0.36420 (17)0.21135 (18)0.0191 (5)
C30.91500 (14)0.3082 (2)0.2832 (2)0.0184 (6)
C110.83626 (14)0.3154 (2)0.0438 (2)0.0175 (6)
C120.77732 (14)0.2548 (2)0.0246 (2)0.0189 (6)
C130.74450 (15)0.2681 (2)0.0670 (2)0.0222 (6)
H130.70520.22650.08280.027*
C140.76917 (17)0.3422 (2)0.1354 (2)0.0258 (7)
H140.74640.35110.1980.031*
C150.82674 (16)0.4038 (2)0.1141 (2)0.0255 (7)
H150.84240.45530.16130.031*
C160.86101 (15)0.3897 (2)0.0240 (2)0.0220 (6)
H160.90080.43030.00890.026*
O10.84463 (11)0.01383 (15)0.21656 (16)0.0255 (5)
C10.81522 (18)0.0853 (2)0.2495 (3)0.0347 (8)
H1A0.77790.10560.2040.052*
H1B0.79720.07690.3180.052*
H1C0.85050.1410.24910.052*
C210.90302 (14)0.1126 (2)0.0934 (2)0.0183 (6)
C220.87405 (15)0.0159 (2)0.1243 (2)0.0214 (6)
C230.87648 (16)0.0689 (2)0.0568 (2)0.0274 (7)
H230.85860.13640.0760.033*
C240.90459 (16)0.0560 (2)0.0376 (3)0.0299 (7)
H240.90450.11450.08310.036*
C250.93295 (16)0.0403 (3)0.0676 (2)0.0286 (7)
H250.95240.04780.13290.034*
C260.93252 (15)0.1258 (2)0.0009 (2)0.0229 (6)
H260.95220.19230.01950.027*
O20.75650 (10)0.18958 (15)0.10072 (14)0.0218 (5)
C20.71273 (16)0.1018 (2)0.0731 (3)0.0298 (7)
H2A0.66890.12950.04830.045*
H2B0.70470.05650.13210.045*
H2C0.73480.05960.02010.045*
C010.96482 (19)0.3561 (3)0.6608 (3)0.0505 (13)0.9
H02A0.94760.2990.61720.076*0.8
H02B0.99740.40040.62310.076*0.8
H02C0.92640.40040.68350.076*0.8
H02D0.96940.34990.58680.061*0.1
H02E0.91670.37840.6720.061*0.1
O0110.2112 (4)0.750.084 (2)0.8
C0210.3083 (5)0.750.0332 (14)0.8
Cl10.9637 (7)0.2275 (7)0.6975 (8)0.061 (3)0.1
Cl21.0037 (4)0.4567 (5)0.6826 (5)0.0276 (16)0.1
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0222 (4)0.0265 (4)0.0233 (4)0.0002 (3)0.0020 (3)0.0080 (3)
N10.0164 (12)0.0182 (11)0.0179 (11)0.0017 (9)0.0018 (9)0.0005 (10)
N20.0148 (12)0.0151 (11)0.0194 (12)0.0002 (9)0.0012 (9)0.0003 (10)
N30.0151 (12)0.0147 (11)0.0227 (12)0.0005 (9)0.0010 (10)0.0011 (10)
N40.0180 (12)0.0179 (11)0.0213 (12)0.0017 (9)0.0009 (10)0.0045 (10)
C30.0148 (14)0.0178 (13)0.0225 (14)0.0017 (11)0.0030 (11)0.0013 (12)
C110.0172 (14)0.0171 (13)0.0182 (13)0.0041 (11)0.0004 (11)0.0006 (11)
C120.0174 (14)0.0169 (13)0.0224 (14)0.0056 (11)0.0021 (11)0.0008 (12)
C130.0197 (15)0.0240 (15)0.0230 (14)0.0035 (12)0.0022 (12)0.0038 (13)
C140.0317 (18)0.0259 (15)0.0198 (14)0.0060 (13)0.0029 (13)0.0002 (13)
C150.0310 (17)0.0220 (14)0.0236 (15)0.0038 (13)0.0024 (13)0.0033 (13)
C160.0220 (15)0.0184 (14)0.0254 (15)0.0004 (11)0.0010 (12)0.0006 (13)
O10.0309 (12)0.0187 (10)0.0268 (11)0.0068 (9)0.0002 (9)0.0021 (9)
C10.041 (2)0.0239 (16)0.0396 (19)0.0137 (14)0.0026 (16)0.0044 (15)
C210.0172 (14)0.0146 (12)0.0231 (14)0.0036 (10)0.0048 (11)0.0048 (11)
C220.0185 (14)0.0206 (14)0.0250 (15)0.0023 (11)0.0044 (12)0.0013 (12)
C230.0269 (17)0.0186 (14)0.0369 (18)0.0005 (12)0.0074 (14)0.0055 (14)
C240.0287 (17)0.0282 (16)0.0329 (17)0.0085 (13)0.0108 (14)0.0107 (15)
C250.0264 (17)0.0345 (17)0.0249 (15)0.0118 (13)0.0050 (13)0.0075 (15)
C260.0228 (16)0.0236 (15)0.0222 (14)0.0064 (12)0.0031 (12)0.0011 (12)
O20.0205 (11)0.0231 (10)0.0219 (10)0.0053 (8)0.0001 (9)0.0014 (9)
C20.0250 (17)0.0301 (16)0.0342 (17)0.0101 (13)0.0068 (14)0.0055 (15)
C010.0178 (18)0.077 (3)0.057 (3)0.003 (2)0.0090 (19)0.048 (2)
O010.140 (7)0.026 (3)0.085 (5)00.037 (5)0
C020.041 (4)0.033 (3)0.026 (3)00.005 (3)0
Cl10.087 (9)0.052 (6)0.043 (6)0.052 (6)0.001 (6)0.002 (5)
Cl20.031 (4)0.031 (4)0.021 (3)0.016 (3)0.005 (3)0.002 (3)
Geometric parameters (Å, º) top
S1—C31.690 (3)C21—C261.387 (4)
N1—N21.313 (3)C21—C221.398 (4)
N1—C31.371 (3)C22—C231.391 (4)
N2—N31.339 (3)C23—C241.377 (5)
N2—C211.428 (3)C23—H230.95
N3—N41.321 (3)C24—C251.386 (5)
N3—C111.434 (4)C24—H240.95
N4—C31.369 (3)C25—C261.390 (4)
C11—C161.382 (4)C25—H250.95
C11—C121.401 (4)C26—H260.95
C12—O21.361 (3)O2—C21.439 (3)
C12—C131.385 (4)C2—H2A0.98
C13—C141.385 (4)C2—H2B0.98
C13—H130.95C2—H2C0.98
C14—C151.392 (4)C01—C021.494 (4)
C14—H140.95C01—Cl21.499 (7)
C15—C161.382 (4)C01—Cl11.683 (8)
C15—H150.95C01—H02A0.98
C16—H160.95C01—H02B0.98
O1—C221.353 (3)C01—H02C0.98
O1—C11.436 (3)C01—H02D0.99
C1—H1A0.98C01—H02E0.99
C1—H1B0.98O01—C021.216 (8)
C1—H1C0.98C02—C01i1.494 (4)
Cg···Cgii3.886 (3)
N2—N1—C3104.8 (2)C23—C24—H24119.2
N1—N2—N3110.2 (2)C25—C24—H24119.2
N1—N2—C21125.9 (2)C24—C25—C26119.0 (3)
N3—N2—C21123.9 (2)C24—C25—H25120.5
N4—N3—N2110.2 (2)C26—C25—H25120.5
N4—N3—C11126.3 (2)C21—C26—C25119.1 (3)
N2—N3—C11123.5 (2)C21—C26—H26120.4
N3—N4—C3104.6 (2)C25—C26—H26120.4
N4—C3—N1110.2 (2)C12—O2—C2116.5 (2)
N4—C3—S1126.1 (2)O2—C2—H2A109.5
N1—C3—S1123.7 (2)O2—C2—H2B109.5
C16—C11—C12122.2 (3)H2A—C2—H2B109.5
C16—C11—N3120.1 (2)O2—C2—H2C109.5
C12—C11—N3117.7 (2)H2A—C2—H2C109.5
O2—C12—C13125.9 (3)H2B—C2—H2C109.5
O2—C12—C11115.8 (2)C02—C01—Cl287.2 (4)
C13—C12—C11118.3 (3)C02—C01—Cl152.7 (4)
C12—C13—C14119.7 (3)Cl2—C01—Cl1139.1 (5)
C12—C13—H13120.1C02—C01—H02A109.5
C14—C13—H13120.1Cl2—C01—H02A154.4
C13—C14—C15121.2 (3)Cl1—C01—H02A57.8
C13—C14—H14119.4C02—C01—H02B109.5
C15—C14—H14119.4Cl2—C01—H02B45.2
C16—C15—C14119.7 (3)Cl1—C01—H02B134.2
C16—C15—H15120.2H02A—C01—H02B109.5
C14—C15—H15120.2C02—C01—H02C109.5
C15—C16—C11118.8 (3)Cl2—C01—H02C81.5
C15—C16—H16120.6Cl1—C01—H02C116.2
C11—C16—H16120.6H02A—C01—H02C109.5
C22—O1—C1117.5 (2)H02B—C01—H02C109.5
O1—C1—H1A109.5C02—C01—H02D135.6
O1—C1—H1B109.5Cl2—C01—H02D102.3
H1A—C1—H1B109.5Cl1—C01—H02D102.3
O1—C1—H1C109.5H02A—C01—H02D52.1
H1A—C1—H1C109.5H02B—C01—H02D58.7
H1B—C1—H1C109.5H02C—C01—H02D114.8
C26—C21—C22122.4 (3)C02—C01—H02E115.4
C26—C21—N2118.7 (2)Cl2—C01—H02E102.3
C22—C21—N2118.9 (3)Cl1—C01—H02E102.3
O1—C22—C23125.7 (3)H02A—C01—H02E88.3
O1—C22—C21117.0 (2)H02B—C01—H02E122.1
C23—C22—C21117.3 (3)H02C—C01—H02E21.5
C24—C23—C22120.7 (3)H02D—C01—H02E104.9
C24—C23—H23119.7O01—C02—C01i113.6 (3)
C22—C23—H23119.7O01—C02—C01113.6 (3)
C23—C24—C25121.5 (3)C01i—C02—C01132.8 (6)
C3—N1—N2—N31.4 (3)C12—C11—C16—C150.6 (4)
C3—N1—N2—C21176.8 (2)N3—C11—C16—C15177.6 (2)
N1—N2—N3—N40.5 (3)N1—N2—C21—C26122.6 (3)
C21—N2—N3—N4177.7 (2)N3—N2—C21—C2655.4 (4)
N1—N2—N3—C11176.7 (2)N1—N2—C21—C2259.1 (4)
C21—N2—N3—C115.1 (4)N3—N2—C21—C22122.9 (3)
N2—N3—N4—C30.6 (3)C1—O1—C22—C232.2 (4)
C11—N3—N4—C3177.7 (2)C1—O1—C22—C21179.5 (3)
N3—N4—C3—N11.5 (3)C26—C21—C22—O1177.7 (3)
N3—N4—C3—S1178.6 (2)N2—C21—C22—O10.5 (4)
N2—N1—C3—N41.8 (3)C26—C21—C22—C230.8 (4)
N2—N1—C3—S1178.2 (2)N2—C21—C22—C23179.0 (2)
N4—N3—C11—C1666.4 (4)O1—C22—C23—C24176.4 (3)
N2—N3—C11—C16116.8 (3)C21—C22—C23—C241.9 (4)
N4—N3—C11—C12115.2 (3)C22—C23—C24—C251.8 (5)
N2—N3—C11—C1261.6 (3)C23—C24—C25—C260.4 (4)
C16—C11—C12—O2176.0 (2)C22—C21—C26—C250.6 (4)
N3—C11—C12—O25.6 (4)N2—C21—C26—C25177.7 (2)
C16—C11—C12—C132.1 (4)C24—C25—C26—C210.8 (4)
N3—C11—C12—C13176.2 (2)C13—C12—O2—C222.9 (4)
O2—C12—C13—C14176.1 (3)C11—C12—O2—C2159.1 (3)
C11—C12—C13—C141.9 (4)Cl2—C01—C02—O01160.1 (3)
C12—C13—C14—C150.2 (4)Cl1—C01—C02—O0111.4 (6)
C13—C14—C15—C161.3 (5)Cl2—C01—C02—C01i19.9 (3)
C14—C15—C16—C111.1 (4)Cl1—C01—C02—C01i168.6 (6)
Symmetry codes: (i) x+2, y, z+3/2; (ii) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC15H14N4O2S·0.4C3H6O·0.1CH2Cl2
Mr346.09
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)100
a, b, c (Å)19.5069 (13), 12.5245 (7), 13.278 (1)
V3)3244.0 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.33 × 0.12 × 0.11
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.919, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
10890, 4013, 2571
Rint0.051
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.169, 1.06
No. of reflections4013
No. of parameters238
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.57

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

 

Acknowledgements

Financial assistance from the National Research Foundation of South Africa is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAl-Salihy, A. R. & Freiser, H. (1970). Talanta, 17, 182–185.  CrossRef PubMed CAS Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationIrving, H. M. N. H. (1977). Dithizone. Analytical Sciences Monographs No. 5. London: The Chemical Society.  Google Scholar
First citationIrving, H. M. N. H., Kiwan, A. M., Rupainwar, D. C. & Sahota, S. S. (1971). Anal. Chim. Acta, 56, 205–220.  CrossRef CAS Web of Science Google Scholar
First citationMirkhalaf, F., Whittaker, D. & Schiffrin, D. J. (1998). J. Electroanal. Chem. 452, 203–213.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds