metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-3-ethyl-4-phenyl-5-(2-pyrid­yl)-4H-1,2,4-triazole]bis­­[di­chloridocopper(II)]

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wangzx0908@yahoo.com.cn

(Received 24 October 2008; accepted 1 December 2008; online 6 December 2008)

The asymmetric unit of the title compound, [Cu2Cl4(C15H14N4)2], contains two halves of two centrosymmetric dinuclear mol­ecules, A and B. The conformations of the two crystallographically independent mol­ecules are slightly different: in A, the Cu⋯Cu separation is 4.174 (9) Å and the dihedral angle between the triazole and phenyl rings is 74.23 (11)°; these values are 4.137 (9) Å and 68.58 (13)°, respectively, in B. In each mol­ecule, the copper(II) ions have a distorted trigonal–bipyramidal coordination geometry with a CuCl2NN′N′′ chromophore. The crystal packing exhibits weak inter­molecular C—H⋯Cl inter­actions.

Related literature

For the magnetic and spin-crossover properties of 1,2,4-triazole complexes, see: Kahn & Martinez (1998[Kahn, O. & Martinez, C. J. (1998). Science, 279, 44-48.]); Klingele et al. (2005[Klingele, M. H., Boyd, P. D. W., Moubaraki, B., Murray, K. S. & Brooker, S. (2005). Eur. J. Inorg. Chem. pp. 910-918.]); Matouzenko et al. (2004[Matouzenko, G. S., Bousseksou, A., Borshch, S. A., Perrin, M., Zein, S., Salmon, L., Molnar, G. & Lecocq, S. (2004). Inorg. Chem. 43, 227-236.]); Moliner et al. (2001[Moliner, N., Gaspar, A. B., Munoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). Inorg. Chem. 40, 3986-3991.]); For the fluorescent properties of 1,2,4-triazole complexes, see: Chen et al. (2008[Chen, Z. L., Li, X. L. & Liang, F. P. (2008). J. Solid State Chem. 181, 2078-2086.]); Matsukizono et al. (2008[Matsukizono, H., Kuroiwa, K. & Kimizuka, N. (2008). Chem. Lett. 37, 446-447.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Cl4(C15H14N4)2]

  • Mr = 769.48

  • Triclinic, [P \overline 1]

  • a = 9.3395 (11) Å

  • b = 12.8096 (14) Å

  • c = 13.9234 (16) Å

  • α = 92.533 (2)°

  • β = 94.596 (2)°

  • γ = 90.452 (2)°

  • V = 1658.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.64 mm−1

  • T = 273 (2) K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.62, Tmax = 0.68

  • 8289 measured reflections

  • 5716 independent reflections

  • 4065 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.069

  • S = 1.05

  • 5716 reflections

  • 399 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cl2i 0.93 2.78 3.445 (4) 129
C15—H15⋯Cl3ii 0.93 2.78 3.579 (4) 145
C16—H16⋯Cl1iii 0.93 2.76 3.518 (4) 139
C19—H19⋯Cl4iv 0.93 2.69 3.365 (4) 130
Symmetry codes: (i) -x+2, -y+2, -z; (ii) -x+1, -y+2, -z+1; (iii) x, y, z+1; (iv) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As the 1,2,4-triazole ring posesses strong electron donors and coordination capability to transition metal ions, the coordination chemistry of 1,2,4-triazole derivatives has gained great attention in recent years (Klingele et al., 2005; Chen et al., 2008; Matsukizono et al., 2008). Some complexes of 1,2,4-triazoles with iron(II) have spin-crossover properties, which can be used as molecular-based memory devices, displays and optical switches (Kahn & Martinez, 1998; Moliner et al., 2001; Matouzenko et al., 2004). We report here the crystal structure analysis of the title compound, (I) (Fig. 1).

The asymmetric unit of the title compound contains two halves of two centrosymmetric dinuclear molecules, A and B, respectively. In A, the dihedral angle between the triazole and pyridine rings is 11.21 (16)°, and that between the triazole and benzene rings is 74.22 (11)°; those values in B are 9.02 (16)° and 68.58 (13)°, respectively.

The crystal packing exhibits weak intermolecular C—H···Cl interactions (Table 1).

Related literature top

For the magnetic and spin-crossover properties of 1,2,4-triazole complexes, see: Kahn & Martinez (1998); Klingele et al. (2005); Matouzenko et al. (2004); Moliner et al. (2001); For the fluorescent properties of 1,2,4-triazole complexes, see: Chen et al. (2008); Matsukizono et al. (2008).

Experimental top

The title compound was prepared by reaction of 3-ethyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole with copper(II) chloride in ethanol and water. To a warm solution of 0.501 grams of 3-ethyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole (2.0 mmol) in 10 ml e thanol, 0.682 grams of copper(II) chloride dihydrate (4.0 mmol) in 10 ml water was added. The filtrate was left to stand at room temperature for several days, and single crystals suitable for X-ray diffraction were collected.

Refinement top

All H atoms were first located in a difference Fourier map, but placed in idealized positions (C—H = 0.93 (aromatic), 0.96 (methyl) or 0.97 Å (methylene)), and allowed to ride on their parent atoms with Uiso(H) values of 1.2 or 1.5 times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) with the atomic labelling and 30% probability displacement ellipsoids [symmetry codes: (i) -x + 1,-y + 2,-z; (ii) -x,-y + 1,-z + 1.
Bis[µ-3-ethyl-4-phenyl-5-(2-pyridyl)-4H-1,2,4- triazole]bis[dichloridocopper(II)] top
Crystal data top
[Cu2Cl4(C15H14N4)2]Z = 2
Mr = 769.48F(000) = 780
Triclinic, P1Dx = 1.541 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3395 (11) ÅCell parameters from 2456 reflections
b = 12.8096 (14) Åθ = 2.2–24.2°
c = 13.9234 (16) ŵ = 1.64 mm1
α = 92.533 (2)°T = 273 K
β = 94.596 (2)°Block, green
γ = 90.452 (2)°0.30 × 0.26 × 0.24 mm
V = 1658.6 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5716 independent reflections
Radiation source: sealed tube4065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 911
Tmin = 0.62, Tmax = 0.68k = 1510
8289 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.01P)2]
where P = (Fo2 + 2Fc2)/3
5716 reflections(Δ/σ)max = 0.004
399 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu2Cl4(C15H14N4)2]γ = 90.452 (2)°
Mr = 769.48V = 1658.6 (3) Å3
Triclinic, P1Z = 2
a = 9.3395 (11) ÅMo Kα radiation
b = 12.8096 (14) ŵ = 1.64 mm1
c = 13.9234 (16) ÅT = 273 K
α = 92.533 (2)°0.30 × 0.26 × 0.24 mm
β = 94.596 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5716 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4065 reflections with I > 2σ(I)
Tmin = 0.62, Tmax = 0.68Rint = 0.032
8289 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.05Δρmax = 0.55 e Å3
5716 reflectionsΔρmin = 0.40 e Å3
399 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.61708 (5)0.91845 (3)0.09989 (3)0.04319 (14)
Cu20.14043 (5)0.57176 (3)0.60559 (3)0.04375 (14)
Cl10.52503 (13)0.75357 (7)0.12247 (7)0.0706 (4)
Cl20.71352 (11)1.02338 (8)0.20518 (8)0.0645 (3)
Cl30.05265 (12)0.73248 (7)0.64432 (7)0.0655 (3)
Cl40.25757 (11)0.44618 (8)0.68906 (8)0.0663 (3)
N10.8159 (3)0.8654 (2)0.0588 (2)0.0443 (8)
N20.6455 (3)0.9681 (2)0.05218 (19)0.0379 (7)
N30.5746 (3)1.0170 (2)0.1247 (2)0.0402 (8)
N40.7742 (3)0.9542 (2)0.1897 (2)0.0377 (7)
N50.3290 (3)0.6315 (2)0.5707 (2)0.0428 (8)
N60.1338 (3)0.5377 (2)0.45041 (19)0.0381 (7)
N70.0455 (3)0.4958 (2)0.3749 (2)0.0388 (8)
N80.2338 (3)0.5611 (2)0.3164 (2)0.0401 (8)
C10.9021 (5)0.8246 (3)0.1216 (3)0.0562 (11)
H10.86620.81340.18550.067*
C21.0420 (4)0.7983 (3)0.0963 (3)0.0551 (11)
H21.09880.76850.14190.066*
C31.0958 (4)0.8167 (3)0.0029 (3)0.0557 (11)
H31.19090.80140.01590.067*
C41.0069 (4)0.8582 (3)0.0633 (3)0.0500 (10)
H41.04060.87020.12760.060*
C50.8689 (4)0.8814 (3)0.0330 (3)0.0384 (9)
C60.7641 (4)0.9318 (2)0.0928 (3)0.0369 (9)
C70.6528 (4)1.0085 (3)0.2065 (3)0.0394 (9)
C80.6207 (4)1.0541 (3)0.3019 (2)0.0553 (11)
H8A0.53691.09800.29300.066*
H8B0.70071.09880.32680.066*
C90.5929 (5)0.9754 (4)0.3773 (3)0.0924 (16)
H9A0.51750.92800.35230.139*
H9B0.56491.01170.43450.139*
H9C0.67890.93700.39260.139*
C100.8771 (4)0.9203 (3)0.2639 (2)0.0389 (9)
C110.8735 (4)0.8180 (3)0.2893 (3)0.0533 (11)
H110.80950.77030.25650.064*
C120.9657 (5)0.7877 (3)0.3639 (3)0.0658 (13)
H120.96450.71860.38160.079*
C131.0597 (5)0.8572 (4)0.4129 (3)0.0666 (13)
H131.12120.83550.46390.080*
C141.0629 (4)0.9590 (4)0.3866 (3)0.0593 (12)
H141.12701.00640.41960.071*
C150.9716 (4)0.9910 (3)0.3117 (3)0.0464 (10)
H150.97371.06000.29360.056*
C160.4266 (4)0.6705 (3)0.6369 (3)0.0557 (11)
H160.40340.67730.70060.067*
C170.5618 (5)0.7017 (3)0.6151 (3)0.0618 (12)
H170.62750.73010.66300.074*
C180.5970 (5)0.6905 (3)0.5229 (3)0.0628 (12)
H180.68840.70880.50700.075*
C190.4956 (4)0.6514 (3)0.4526 (3)0.0579 (12)
H190.51700.64450.38850.069*
C200.3628 (4)0.6231 (3)0.4788 (3)0.0423 (10)
C210.2472 (4)0.5760 (2)0.4143 (2)0.0383 (9)
C220.1065 (4)0.5101 (3)0.2944 (3)0.0407 (10)
C230.0445 (4)0.4789 (3)0.1960 (3)0.0544 (11)
H23A0.03990.43550.20130.065*
H23B0.11390.43670.16420.065*
C240.0022 (5)0.5691 (3)0.1334 (3)0.0805 (15)
H24A0.06590.61200.16440.121*
H24B0.04030.54240.07200.121*
H24C0.08600.61010.12390.121*
C250.3299 (4)0.5928 (3)0.2453 (2)0.0425 (10)
C260.3472 (4)0.6965 (3)0.2290 (3)0.0548 (11)
H260.30040.74740.26410.066*
C270.4356 (5)0.7235 (3)0.1596 (3)0.0691 (13)
H270.44870.79340.14690.083*
C280.5050 (5)0.6471 (4)0.1087 (3)0.0734 (14)
H280.56460.66590.06170.088*
C290.4870 (5)0.5437 (4)0.1266 (3)0.0655 (13)
H290.53440.49270.09210.079*
C300.3985 (4)0.5157 (3)0.1956 (3)0.0522 (11)
H300.38540.44580.20850.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0498 (3)0.0414 (3)0.0382 (3)0.0052 (2)0.0051 (2)0.0032 (2)
Cu20.0533 (3)0.0406 (3)0.0373 (3)0.0008 (2)0.0068 (2)0.0036 (2)
Cl10.1114 (10)0.0409 (6)0.0567 (7)0.0113 (6)0.0079 (7)0.0003 (5)
Cl20.0555 (7)0.0697 (7)0.0714 (8)0.0007 (6)0.0146 (6)0.0207 (6)
Cl30.0942 (9)0.0391 (6)0.0654 (8)0.0070 (6)0.0238 (7)0.0036 (5)
Cl40.0598 (7)0.0617 (7)0.0785 (8)0.0086 (6)0.0030 (6)0.0178 (6)
N10.049 (2)0.0439 (19)0.040 (2)0.0092 (15)0.0050 (17)0.0072 (16)
N20.043 (2)0.0409 (19)0.0296 (18)0.0014 (15)0.0044 (16)0.0041 (14)
N30.045 (2)0.0405 (19)0.0354 (19)0.0031 (15)0.0071 (16)0.0055 (15)
N40.042 (2)0.0347 (18)0.0361 (19)0.0014 (15)0.0034 (16)0.0010 (14)
N50.047 (2)0.0438 (19)0.0367 (19)0.0040 (15)0.0073 (17)0.0075 (15)
N60.045 (2)0.0377 (18)0.0317 (18)0.0015 (15)0.0046 (16)0.0018 (14)
N70.045 (2)0.0374 (18)0.0343 (18)0.0021 (14)0.0062 (16)0.0055 (15)
N80.055 (2)0.0314 (17)0.0344 (19)0.0004 (15)0.0110 (17)0.0014 (14)
C10.068 (3)0.062 (3)0.038 (2)0.013 (2)0.002 (2)0.009 (2)
C20.059 (3)0.056 (3)0.052 (3)0.020 (2)0.012 (2)0.004 (2)
C30.052 (3)0.057 (3)0.059 (3)0.015 (2)0.007 (2)0.003 (2)
C40.052 (3)0.061 (3)0.037 (2)0.004 (2)0.005 (2)0.000 (2)
C50.042 (3)0.034 (2)0.039 (2)0.0020 (18)0.004 (2)0.0001 (18)
C60.044 (3)0.033 (2)0.033 (2)0.0031 (18)0.003 (2)0.0015 (18)
C70.042 (3)0.041 (2)0.035 (2)0.0011 (19)0.003 (2)0.0021 (18)
C80.052 (3)0.074 (3)0.038 (2)0.012 (2)0.004 (2)0.014 (2)
C90.096 (4)0.141 (5)0.044 (3)0.022 (3)0.022 (3)0.018 (3)
C100.043 (2)0.044 (2)0.031 (2)0.0070 (19)0.0064 (19)0.0028 (19)
C110.068 (3)0.041 (3)0.050 (3)0.002 (2)0.002 (2)0.002 (2)
C120.083 (4)0.049 (3)0.068 (3)0.018 (3)0.012 (3)0.017 (2)
C130.066 (3)0.093 (4)0.040 (3)0.021 (3)0.004 (2)0.015 (3)
C140.055 (3)0.079 (3)0.042 (3)0.002 (2)0.001 (2)0.007 (2)
C150.054 (3)0.048 (2)0.038 (2)0.001 (2)0.006 (2)0.003 (2)
C160.062 (3)0.064 (3)0.041 (3)0.010 (2)0.006 (2)0.009 (2)
C170.059 (3)0.069 (3)0.056 (3)0.014 (2)0.003 (2)0.005 (2)
C180.052 (3)0.072 (3)0.066 (3)0.014 (2)0.012 (3)0.001 (3)
C190.057 (3)0.070 (3)0.047 (3)0.006 (2)0.009 (2)0.004 (2)
C200.048 (3)0.037 (2)0.043 (2)0.0023 (19)0.008 (2)0.0002 (18)
C210.049 (3)0.032 (2)0.034 (2)0.0051 (18)0.005 (2)0.0022 (17)
C220.053 (3)0.031 (2)0.039 (2)0.0023 (18)0.009 (2)0.0044 (18)
C230.062 (3)0.059 (3)0.041 (3)0.006 (2)0.010 (2)0.012 (2)
C240.107 (4)0.090 (4)0.043 (3)0.000 (3)0.008 (3)0.015 (3)
C250.053 (3)0.044 (2)0.032 (2)0.001 (2)0.0100 (19)0.0029 (18)
C260.067 (3)0.041 (3)0.059 (3)0.000 (2)0.012 (2)0.006 (2)
C270.077 (4)0.062 (3)0.070 (3)0.006 (3)0.007 (3)0.024 (3)
C280.070 (4)0.108 (4)0.044 (3)0.005 (3)0.013 (3)0.018 (3)
C290.073 (3)0.081 (4)0.044 (3)0.012 (3)0.018 (2)0.002 (2)
C300.069 (3)0.050 (3)0.039 (2)0.007 (2)0.013 (2)0.001 (2)
Geometric parameters (Å, º) top
Cu1—N3i1.989 (3)C9—H9A0.9600
Cu1—N12.029 (3)C9—H9B0.9600
Cu1—N22.179 (3)C9—H9C0.9600
Cu1—Cl22.2657 (11)C10—C151.372 (5)
Cu1—Cl12.2734 (10)C10—C111.374 (4)
Cu2—N7ii1.977 (3)C11—C121.367 (5)
Cu2—N52.018 (3)C11—H110.9300
Cu2—N62.181 (3)C12—C131.366 (5)
Cu2—Cl42.2637 (12)C12—H120.9300
Cu2—Cl32.2804 (11)C13—C141.371 (5)
N1—C11.328 (4)C13—H130.9300
N1—C51.340 (4)C14—C151.373 (5)
N2—C61.302 (4)C14—H140.9300
N2—N31.382 (3)C15—H150.9300
N3—C71.311 (4)C16—C171.382 (5)
N3—Cu1i1.989 (3)C16—H160.9300
N4—C61.362 (4)C17—C181.352 (5)
N4—C71.365 (4)C17—H170.9300
N4—C101.438 (4)C18—C191.380 (5)
N5—C161.322 (4)C18—H180.9300
N5—C201.342 (4)C19—C201.371 (5)
N6—C211.309 (4)C19—H190.9300
N6—N71.371 (3)C20—C211.457 (5)
N7—C221.317 (4)C22—C231.480 (5)
N7—Cu2ii1.977 (3)C23—C241.515 (5)
N8—C221.358 (4)C23—H23A0.9700
N8—C211.364 (4)C23—H23B0.9700
N8—C251.457 (4)C24—H24A0.9600
C1—C21.374 (5)C24—H24B0.9600
C1—H10.9300C24—H24C0.9600
C2—C31.366 (5)C25—C261.367 (4)
C2—H20.9300C25—C301.373 (4)
C3—C41.382 (4)C26—C271.374 (5)
C3—H30.9300C26—H260.9300
C4—C51.362 (5)C27—C281.379 (5)
C4—H40.9300C27—H270.9300
C5—C61.471 (4)C28—C291.369 (5)
C7—C81.482 (4)C28—H280.9300
C8—C91.522 (5)C29—C301.375 (5)
C8—H8A0.9700C29—H290.9300
C8—H8B0.9700C30—H300.9300
N3i—Cu1—N1172.45 (11)H9A—C9—H9B109.5
N3i—Cu1—N295.70 (10)C8—C9—H9C109.5
N1—Cu1—N277.15 (11)H9A—C9—H9C109.5
N3i—Cu1—Cl291.19 (9)H9B—C9—H9C109.5
N1—Cu1—Cl289.93 (9)C15—C10—C11121.0 (4)
N2—Cu1—Cl2116.78 (8)C15—C10—N4119.9 (3)
N3i—Cu1—Cl192.67 (8)C11—C10—N4118.9 (3)
N1—Cu1—Cl192.30 (8)C12—C11—C10118.6 (4)
N2—Cu1—Cl1112.17 (8)C12—C11—H11120.7
Cl2—Cu1—Cl1130.20 (4)C10—C11—H11120.7
N7ii—Cu2—N5173.36 (11)C13—C12—C11121.2 (4)
N7ii—Cu2—N696.47 (10)C13—C12—H12119.4
N5—Cu2—N677.15 (11)C11—C12—H12119.4
N7ii—Cu2—Cl490.06 (9)C12—C13—C14119.7 (4)
N5—Cu2—Cl490.60 (9)C12—C13—H13120.2
N6—Cu2—Cl4111.51 (8)C14—C13—H13120.2
N7ii—Cu2—Cl391.26 (8)C13—C14—C15120.1 (4)
N5—Cu2—Cl392.95 (8)C13—C14—H14119.9
N6—Cu2—Cl3113.03 (8)C15—C14—H14119.9
Cl4—Cu2—Cl3134.97 (4)C10—C15—C14119.3 (4)
C1—N1—C5117.9 (3)C10—C15—H15120.3
C1—N1—Cu1122.4 (3)C14—C15—H15120.3
C5—N1—Cu1119.3 (2)N5—C16—C17122.5 (4)
C6—N2—N3106.7 (3)N5—C16—H16118.8
C6—N2—Cu1111.1 (2)C17—C16—H16118.8
N3—N2—Cu1141.9 (2)C18—C17—C16119.0 (4)
C7—N3—N2108.3 (3)C18—C17—H17120.5
C7—N3—Cu1i129.5 (2)C16—C17—H17120.5
N2—N3—Cu1i122.2 (2)C17—C18—C19119.2 (4)
C6—N4—C7105.2 (3)C17—C18—H18120.4
C6—N4—C10130.0 (3)C19—C18—H18120.4
C7—N4—C10124.5 (3)C20—C19—C18118.8 (4)
C16—N5—C20118.4 (3)C20—C19—H19120.6
C16—N5—Cu2122.0 (3)C18—C19—H19120.6
C20—N5—Cu2119.4 (2)N5—C20—C19122.0 (3)
C21—N6—N7107.3 (3)N5—C20—C21112.5 (3)
C21—N6—Cu2111.1 (2)C19—C20—C21125.4 (3)
N7—N6—Cu2141.4 (2)N6—C21—N8109.6 (3)
C22—N7—N6108.4 (3)N6—C21—C20119.5 (3)
C22—N7—Cu2ii129.7 (3)N8—C21—C20130.9 (3)
N6—N7—Cu2ii122.0 (2)N7—C22—N8108.7 (3)
C22—N8—C21106.1 (3)N7—C22—C23125.6 (3)
C22—N8—C25124.3 (3)N8—C22—C23125.7 (3)
C21—N8—C25129.6 (3)C22—C23—C24114.7 (3)
N1—C1—C2123.0 (4)C22—C23—H23A108.6
N1—C1—H1118.5C24—C23—H23A108.6
C2—C1—H1118.5C22—C23—H23B108.6
C3—C2—C1118.6 (4)C24—C23—H23B108.6
C3—C2—H2120.7H23A—C23—H23B107.6
C1—C2—H2120.7C23—C24—H24A109.5
C2—C3—C4119.0 (4)C23—C24—H24B109.5
C2—C3—H3120.5H24A—C24—H24B109.5
C4—C3—H3120.5C23—C24—H24C109.5
C5—C4—C3118.9 (4)H24A—C24—H24C109.5
C5—C4—H4120.5H24B—C24—H24C109.5
C3—C4—H4120.5C26—C25—C30122.4 (4)
N1—C5—C4122.5 (3)C26—C25—N8119.8 (3)
N1—C5—C6111.9 (3)C30—C25—N8117.8 (3)
C4—C5—C6125.5 (3)C25—C26—C27118.3 (4)
N2—C6—N4110.7 (3)C25—C26—H26120.9
N2—C6—C5119.8 (3)C27—C26—H26120.9
N4—C6—C5129.3 (4)C26—C27—C28120.2 (4)
N3—C7—N4109.1 (3)C26—C27—H27119.9
N3—C7—C8126.4 (4)C28—C27—H27119.9
N4—C7—C8124.4 (3)C29—C28—C27120.6 (4)
C7—C8—C9115.4 (3)C29—C28—H28119.7
C7—C8—H8A108.4C27—C28—H28119.7
C9—C8—H8A108.4C28—C29—C30119.8 (4)
C7—C8—H8B108.4C28—C29—H29120.1
C9—C8—H8B108.4C30—C29—H29120.1
H8A—C8—H8B107.5C25—C30—C29118.8 (4)
C8—C9—H9A109.5C25—C30—H30120.6
C8—C9—H9B109.5C29—C30—H30120.6
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl2iii0.932.783.445 (4)129
C15—H15···Cl3iv0.932.783.579 (4)145
C16—H16···Cl1v0.932.763.518 (4)139
C19—H19···Cl4vi0.932.693.365 (4)130
Symmetry codes: (iii) x+2, y+2, z; (iv) x+1, y+2, z+1; (v) x, y, z+1; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2Cl4(C15H14N4)2]
Mr769.48
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)9.3395 (11), 12.8096 (14), 13.9234 (16)
α, β, γ (°)92.533 (2), 94.596 (2), 90.452 (2)
V3)1658.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.64
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.62, 0.68
No. of measured, independent and
observed [I > 2σ(I)] reflections
8289, 5716, 4065
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.069, 1.05
No. of reflections5716
No. of parameters399
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.40

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl2i0.932.783.445 (4)129.4
C15—H15···Cl3ii0.932.783.579 (4)145.0
C16—H16···Cl1iii0.932.763.518 (4)139.0
C19—H19···Cl4iv0.932.693.365 (4)130.0
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+2, z+1; (iii) x, y, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

We are grateful to Jingye Pharmachemical Pilot Plant for financial assistance though project No. 8507041056.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z. L., Li, X. L. & Liang, F. P. (2008). J. Solid State Chem. 181, 2078–2086.  Web of Science CSD CrossRef CAS Google Scholar
First citationKahn, O. & Martinez, C. J. (1998). Science, 279, 44–48.  Web of Science CrossRef CAS Google Scholar
First citationKlingele, M. H., Boyd, P. D. W., Moubaraki, B., Murray, K. S. & Brooker, S. (2005). Eur. J. Inorg. Chem. pp. 910–918.  Web of Science CSD CrossRef Google Scholar
First citationMatouzenko, G. S., Bousseksou, A., Borshch, S. A., Perrin, M., Zein, S., Salmon, L., Molnar, G. & Lecocq, S. (2004). Inorg. Chem. 43, 227–236.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMatsukizono, H., Kuroiwa, K. & Kimizuka, N. (2008). Chem. Lett. 37, 446–447.  Web of Science CrossRef CAS Google Scholar
First citationMoliner, N., Gaspar, A. B., Munoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). Inorg. Chem. 40, 3986–3991.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds