metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[8-(Di­phenyl­phosphan­yl)naphthyl-κ2C1,P](phenyl­ethyn­yl)tris­­(tri­methyl­phosphane-κP)iron(II)

aSchool of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
*Correspondence e-mail: metallacycle@gmail.com

(Received 6 November 2008; accepted 7 December 2008; online 13 December 2008)

The title compound, [Fe(C8H5)(C22H16P)(C3H9P)3], was synthesized by the addition of phenyl­ethine to a solution of the parent methyl iron complex Fe(CH3){P(C6H5)2(C10H6)}(PMe3)3 at 213 K, accompanied by evolution of methane. The coordination around the iron center can be described as slightly distorted octa­hedral [Fe—P 2.2485 (12)–2.2902 (12) Å; Fe—C 1.918 (5), 2.015 (4) Å], with a meridional arrangement of the trimethyl­phosphine ligands and the introduced terminal alkinyl-ligand trans to the P(Ph)2-anchoring group.

Related literature

Some details of the synthesis of inter­mediates were described by Carré et al. (2000[Carré, F. H., Chuit, C., Corriu, R. J. P., Douglas, W. E., Guy, D. M. H. & Reye, C. (2000). Eur. J. Inorg. Chem. pp. 647-653.]) and Karsch (1977[Karsch, H. H. (1977). Chem. Ber. 110, 2699-2711.]). For related iron(II) complexes, see: Venturi et al. (2004[Venturi, C., Bellachioma, G., Cardaci, G. & Macchioni, A. (2004). Inorg. Chim. Acta, 357, 3712-3720.]); Costuas et al. (2004[Costuas, K., Paul, F., Toupet, L., Halet, J.-F. & Lapinte, C. (2004). Organometallics, 23, 2053-2068.]); Beck et al. (2008[Beck, R., Zheng, T., Sun, H., Li, X., Flörke, U. & Klein, H.-F. (2008). J. Organomet. Chem. 693, 3471-3478.]). Highly active iron(II) catalysts for olefin polymerization have bee prepared by Britovsek et al. (1998[Britovsek, G. J. P., Gibson, V. C., Kimberely, B. S., Maddox, P. J., Solan, G. A., White, A. J. P. & Williams, D. J. (1998). Chem. Commun. pp. 849-850.]) and Small et al. (1998[Small, B. L., Brookhart, M. & Bennett, A. M. A. (1998). J. Am. Chem. Soc. 102, 4049-4050.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C8H5)(C22H16P)(C3H9P)3]

  • Mr = 696.50

  • Monoclinic, C c

  • a = 9.6667 (18) Å

  • b = 19.965 (4) Å

  • c = 19.035 (4) Å

  • β = 99.322 (7)°

  • V = 3625.2 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 293 (2) K

  • 0.15 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.913, Tmax = 0.945

  • 19984 measured reflections

  • 5830 independent reflections

  • 4723 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.098

  • S = 1.00

  • 5830 reflections

  • 406 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.49 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); 2641 Friedel pairs

  • Flack parameter: 0.045 (17)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Recently, much attention has been paid to the use of highly active bis(imino) pyridine iron complexes for ethylene polymerization and alpha-olefine oligomerization as catalyst precursors reported by Britovsek et al. (1998) and Small et al. (1998). At this stage it is remarkable how little is known about this type of reactive intermediates. With labile methyl iron complexes in the presence P(Ph)2-anchoring groups we were able to synthesize five-membered metallacyles under smooth conditions (see Beck et al. 2008). These complexes represents model compounds for the catalytic functionalization of C,C bonds. Related, phenylethinyl-iron(II) complexes were prepared by Venturi et al. (2004) and Costuas et al. (2004). The title compound Fe(CCPh){P(C6H5)2(C10H6)}(PMe3)3 (1), was synthesized by addition of phenylethine to a solution of the parent methyl iron complex Fe(CH3){P(C6H5)2(C10H6)}(PMe3)3 at low temperature (213 K), accompanied by evolution of methane.

The meridional-cis arrangement of the ligands in the configuration remained stable when the reaction is finished, by means no rearrangement occurred because of different trans influence of the alkinyl carbon atom and no indication for isomers after the reaction was completed. From pentane solutions at 253 K orange-red crystal in form of needles were obtained, which were suitable for X-ray diffraction. The molecular structure of 1 is shown in Figure 1. The iron atom attains an octahedral coordination with a meridional arrangement of the trimethylphosphine ligands by two trans PMe3 orientated groups (P3—Fe1—P2 = 158.97 (5)°) a cis disposed PMe3 group (P4) trans to the metallated carbon (C1) atom (C1—Fe1—P4 = 174.38 (14)°), and the chelating phosphorus atom (P1) trans to the alkinyl group (CCPh) with an angle of (C11—Fe1—P1 = 173.69 (14)°). The inner bond angles of the trimethylphosphine ligands are close to 90°, with the smallest involving the bite angle of the five-membered chelate ring (C1—Fe1—P1 = 84.07 (13)°). The sum of internal angles is 537°, indicating considerable relaxation of the metallacycle towards planarity. The Fe—P bond lengths fall within the range observed for other Fe(II) complexes containing PMe3 groups (Venturi et al., 2004). The complex contains two different Fe—C bonds with sp, and sp2 hybridization with bond lengths of 1.918 (5) and 2.015 (4) Å, respectively, which are consistent with those in related Cp-stabilized iron(II) complexes with terminal alkinyl groups reported by Costuas et al. (2004).

Related literature top

Some details of the synthesis of intermediates were described by Carré et al. (2000) and Karsch (1977). For related iron(II) complexes, see: Venturi et al. (2004); Costuas et al. (2004); Beck et al. (2008). Highly active iron(II) catalysts for olefin polymerization have bee prepared by Britovsek et al. (1998) and Small et al. (1998).

Experimental top

Standard vacuum techniques were used in manipulations of volatile and air sensitive material. Literature methods were applied in the preparation of dimethyltetrakis(trimethylphosphine)iron(II) (Karsch, 1977), and 1-Diphenylphosphanyl-naphthaline (Carré et al., 2000). Other chemicals were used as purchased. The title compound was synthesized by combining a solution of phenylethine (140 mg, 1.37 mmol) in 50 ml of THF at -70 °C with a sample of Fe(CH3){P(C6H5)2(C10H6)}(PMe3)3 (836 mg, 1.37 mmol) in 50 ml of THF, effecting a change of color from red to orange. After warm-up the mixture was kept stirring at 293 K for 16 h, and then the volatiles were removed in vacuo to give orange solid. This was dissolved in 50 ml of pentane and crystallized at 253 K to give yellow crystals, which were suitable for X-ray diffraction. Yield 391 mg (41%); 396–398 K (dec.).

Refinement top

All H atoms were fixed geometrically and treated as riding on their parent atoms with C—H = 0.93 Å (aromatic) and 0.96 Å (methyl), and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999; software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (1) showing the atomic labels and 50% probability displacement ellipsoids. H atoms omitted for clarity.
[8-(Diphenylphosphanyl)naphthyl- κ2C1,P](phenylethynyl)tris(trimethylphosphane-κP)iron(II) top
Crystal data top
[Fe(C8H5)(C22H16P)(C3H9P)3]F(000) = 1472
Mr = 696.50Dx = 1.276 Mg m3
Monoclinic, CcMelting point: 398 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 9.6667 (18) ÅCell parameters from 1391 reflections
b = 19.965 (4) Åθ = 1.9–27.3°
c = 19.035 (4) ŵ = 0.62 mm1
β = 99.322 (7)°T = 293 K
V = 3625.2 (12) Å3Block, orange
Z = 40.15 × 0.13 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5830 independent reflections
Radiation source: fine-focus sealed tube4723 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1111
Tmin = 0.913, Tmax = 0.945k = 2123
19984 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.047P)2 + 0.0194P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.003
5830 reflectionsΔρmax = 0.31 e Å3
406 parametersΔρmin = 0.49 e Å3
2 restraintsAbsolute structure: Flack (1983); 2641 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.045 (17)
Crystal data top
[Fe(C8H5)(C22H16P)(C3H9P)3]V = 3625.2 (12) Å3
Mr = 696.50Z = 4
Monoclinic, CcMo Kα radiation
a = 9.6667 (18) ŵ = 0.62 mm1
b = 19.965 (4) ÅT = 293 K
c = 19.035 (4) Å0.15 × 0.13 × 0.10 mm
β = 99.322 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5830 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4723 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.945Rint = 0.066
19984 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.098Δρmax = 0.31 e Å3
S = 1.00Δρmin = 0.49 e Å3
5830 reflectionsAbsolute structure: Flack (1983); 2641 Friedel pairs
406 parametersAbsolute structure parameter: 0.045 (17)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.57710 (4)0.97187 (3)0.00279 (3)0.03402 (15)
P10.73164 (11)0.89846 (6)0.05495 (5)0.0365 (3)
P20.42146 (11)0.96230 (6)0.07337 (6)0.0445 (3)
P30.73799 (11)1.02026 (6)0.06302 (6)0.0415 (3)
P40.44623 (13)0.90402 (7)0.08487 (6)0.0484 (3)
C10.6666 (5)1.0366 (2)0.0723 (2)0.0393 (10)
C20.7904 (4)1.0176 (2)0.12015 (19)0.0369 (10)
C30.8470 (4)0.9530 (2)0.1165 (2)0.0385 (10)
C40.9682 (5)0.9347 (2)0.1606 (2)0.0473 (11)
H41.00480.89190.15710.057*
C51.0364 (5)0.9798 (3)0.2105 (2)0.0575 (14)
H51.11950.96730.23920.069*
C60.9829 (5)1.0414 (3)0.2174 (2)0.0549 (13)
H61.02881.07040.25160.066*
C70.8580 (5)1.0626 (2)0.1735 (2)0.0453 (11)
C80.7988 (6)1.1257 (3)0.1804 (2)0.0577 (14)
H80.84121.15530.21500.069*
C90.6789 (6)1.1436 (3)0.1365 (3)0.0610 (14)
H90.63821.18510.14230.073*
C100.6157 (5)1.0999 (2)0.0822 (2)0.0498 (12)
H100.53631.11440.05180.060*
C110.4624 (4)1.0389 (2)0.0559 (2)0.0404 (11)
C120.3897 (5)1.0786 (2)0.0953 (2)0.0458 (11)
C130.3001 (4)1.1223 (2)0.1402 (2)0.0386 (10)
C140.3382 (5)1.1498 (2)0.2021 (2)0.0504 (12)
H140.42531.13960.21410.060*
C150.2487 (7)1.1918 (2)0.2458 (2)0.0632 (15)
H150.27691.21020.28600.076*
C160.1194 (7)1.2065 (3)0.2303 (3)0.0667 (15)
H160.05901.23430.26020.080*
C170.0789 (5)1.1804 (3)0.1706 (3)0.0642 (14)
H170.00971.19000.16020.077*
C180.1684 (5)1.1397 (2)0.1254 (3)0.0533 (12)
H180.14011.12350.08420.064*
C190.9258 (5)1.0057 (3)0.0370 (3)0.0612 (14)
H19A0.94560.95890.04180.092*
H19B0.95421.01910.01160.092*
H19C0.97651.03140.06710.092*
C200.7453 (6)1.1119 (2)0.0592 (3)0.0710 (15)
H20A0.79281.12840.09630.107*
H20B0.79531.12580.01380.107*
H20C0.65181.12970.06560.107*
C210.7253 (6)1.0122 (3)0.1594 (2)0.0716 (16)
H21A0.79901.03750.17510.107*
H21B0.63621.02890.18230.107*
H21C0.73400.96590.17160.107*
C220.4704 (6)0.9031 (3)0.1791 (2)0.0835 (19)
H22A0.56260.88680.18240.125*
H22B0.45960.94760.19810.125*
H22C0.40160.87420.20570.125*
C230.2569 (6)0.9208 (3)0.1019 (3)0.0697 (16)
H23A0.21200.89030.13740.105*
H23B0.24080.96590.11840.105*
H23C0.21910.91480.05870.105*
C240.4422 (6)0.8136 (3)0.0715 (3)0.0725 (17)
H24A0.42170.80430.02470.109*
H24B0.53170.79480.07610.109*
H24C0.37100.79410.10650.109*
C250.4800 (6)0.9780 (3)0.1683 (2)0.0638 (15)
H25A0.50801.02390.17530.096*
H25B0.55800.94940.18550.096*
H25C0.40460.96880.19410.096*
C260.3291 (6)0.8838 (3)0.0838 (3)0.0706 (16)
H26A0.27690.88800.12240.106*
H26B0.39590.84810.09380.106*
H26C0.26600.87410.04070.106*
C270.2763 (5)1.0220 (3)0.0600 (3)0.0677 (16)
H27A0.21631.01410.09470.101*
H27B0.22381.01650.01310.101*
H27C0.31271.06680.06530.101*
C280.6955 (5)0.8309 (2)0.1165 (2)0.0443 (11)
C290.7102 (5)0.8412 (3)0.1906 (2)0.0558 (13)
H290.73950.88270.20970.067*
C300.6813 (6)0.7903 (3)0.2350 (3)0.0701 (16)
H300.69100.79770.28380.084*
C310.6384 (7)0.7290 (4)0.2078 (4)0.088 (2)
H310.61920.69510.23830.106*
C320.6232 (7)0.7169 (3)0.1358 (4)0.091 (2)
H320.59300.67520.11750.109*
C330.6539 (6)0.7681 (3)0.0904 (3)0.0659 (15)
H330.64620.75970.04180.079*
C340.8435 (4)0.8478 (2)0.0054 (2)0.0404 (10)
C350.8159 (5)0.8479 (2)0.0685 (2)0.0502 (12)
H350.74310.87400.09200.060*
C360.8947 (6)0.8099 (3)0.1076 (3)0.0643 (15)
H360.87340.81030.15710.077*
C371.0031 (6)0.7718 (3)0.0754 (3)0.0642 (14)
H371.05670.74690.10230.077*
C381.0324 (5)0.7704 (2)0.0022 (3)0.0616 (14)
H381.10560.74410.02040.074*
C390.9539 (5)0.8080 (2)0.0377 (2)0.0554 (13)
H390.97520.80670.08710.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0313 (3)0.0370 (3)0.0331 (3)0.0010 (3)0.0032 (2)0.0010 (3)
P10.0365 (6)0.0344 (7)0.0374 (5)0.0002 (5)0.0027 (4)0.0021 (5)
P20.0356 (6)0.0585 (8)0.0404 (6)0.0014 (6)0.0090 (5)0.0033 (6)
P30.0362 (6)0.0459 (7)0.0431 (6)0.0010 (5)0.0087 (5)0.0066 (5)
P40.0468 (7)0.0534 (8)0.0419 (6)0.0074 (6)0.0024 (5)0.0050 (6)
C10.045 (3)0.039 (3)0.036 (2)0.004 (2)0.0099 (18)0.0032 (19)
C20.039 (2)0.037 (3)0.036 (2)0.006 (2)0.0091 (17)0.0010 (18)
C30.038 (2)0.042 (3)0.036 (2)0.003 (2)0.0074 (18)0.0065 (19)
C40.041 (3)0.047 (3)0.051 (2)0.001 (2)0.001 (2)0.009 (2)
C50.052 (3)0.068 (4)0.046 (3)0.009 (3)0.013 (2)0.007 (2)
C60.052 (3)0.059 (4)0.048 (3)0.014 (3)0.008 (2)0.007 (2)
C70.051 (3)0.041 (3)0.042 (2)0.012 (2)0.0012 (19)0.002 (2)
C80.075 (4)0.046 (3)0.048 (3)0.014 (3)0.004 (2)0.011 (2)
C90.075 (4)0.044 (3)0.062 (3)0.009 (3)0.005 (3)0.016 (2)
C100.050 (3)0.048 (3)0.049 (2)0.006 (2)0.001 (2)0.004 (2)
C110.033 (2)0.045 (3)0.044 (2)0.001 (2)0.0092 (19)0.009 (2)
C120.040 (3)0.050 (3)0.045 (2)0.003 (2)0.001 (2)0.001 (2)
C130.037 (2)0.035 (3)0.042 (2)0.004 (2)0.0024 (18)0.0018 (19)
C140.058 (3)0.043 (3)0.052 (3)0.010 (2)0.013 (2)0.001 (2)
C150.104 (5)0.039 (3)0.044 (2)0.004 (3)0.007 (3)0.004 (2)
C160.077 (4)0.047 (3)0.069 (3)0.020 (3)0.009 (3)0.002 (3)
C170.043 (3)0.061 (4)0.086 (4)0.016 (3)0.002 (3)0.000 (3)
C180.045 (3)0.054 (3)0.061 (3)0.002 (2)0.008 (2)0.009 (2)
C190.043 (3)0.067 (4)0.075 (3)0.005 (3)0.015 (2)0.021 (3)
C200.068 (4)0.055 (3)0.095 (4)0.006 (3)0.030 (3)0.016 (3)
C210.069 (4)0.097 (5)0.052 (3)0.008 (3)0.019 (2)0.014 (3)
C220.080 (4)0.125 (6)0.041 (3)0.011 (4)0.000 (3)0.011 (3)
C230.055 (3)0.079 (4)0.068 (3)0.003 (3)0.010 (3)0.004 (3)
C240.069 (4)0.065 (4)0.079 (4)0.014 (3)0.000 (3)0.019 (3)
C250.060 (3)0.087 (4)0.046 (3)0.009 (3)0.016 (2)0.001 (3)
C260.065 (4)0.083 (4)0.067 (3)0.009 (3)0.023 (3)0.008 (3)
C270.045 (3)0.096 (5)0.064 (3)0.015 (3)0.015 (2)0.010 (3)
C280.038 (2)0.046 (3)0.048 (2)0.001 (2)0.0051 (18)0.009 (2)
C290.051 (3)0.065 (3)0.051 (3)0.007 (3)0.007 (2)0.016 (2)
C300.070 (4)0.085 (5)0.057 (3)0.010 (3)0.017 (3)0.021 (3)
C310.089 (5)0.085 (5)0.091 (5)0.019 (4)0.014 (4)0.043 (4)
C320.097 (5)0.053 (4)0.119 (6)0.026 (3)0.007 (4)0.022 (4)
C330.080 (4)0.042 (3)0.073 (3)0.012 (3)0.006 (3)0.006 (3)
C340.042 (2)0.037 (3)0.043 (2)0.002 (2)0.0089 (19)0.001 (2)
C350.054 (3)0.047 (3)0.049 (2)0.008 (2)0.005 (2)0.000 (2)
C360.086 (4)0.057 (3)0.050 (3)0.012 (3)0.013 (3)0.014 (2)
C370.073 (4)0.050 (3)0.075 (4)0.006 (3)0.029 (3)0.013 (3)
C380.062 (4)0.047 (3)0.077 (3)0.020 (2)0.013 (3)0.003 (3)
C390.062 (3)0.053 (3)0.052 (3)0.015 (3)0.009 (2)0.001 (2)
Geometric parameters (Å, º) top
Fe1—C111.918 (5)C19—H19B0.9600
Fe1—C12.015 (4)C19—H19C0.9600
Fe1—P12.2485 (12)C20—H20A0.9600
Fe1—P22.2601 (12)C20—H20B0.9600
Fe1—P42.2882 (13)C20—H20C0.9600
Fe1—P32.2902 (12)C21—H21A0.9600
P1—C31.838 (4)C21—H21B0.9600
P1—C341.846 (4)C21—H21C0.9600
P1—C281.857 (4)C22—H22A0.9600
P2—C271.827 (5)C22—H22B0.9600
P2—C261.831 (6)C22—H22C0.9600
P2—C251.832 (5)C23—H23A0.9600
P3—C191.827 (5)C23—H23B0.9600
P3—C211.826 (5)C23—H23C0.9600
P3—C201.833 (5)C24—H24A0.9600
P4—C241.825 (6)C24—H24B0.9600
P4—C231.836 (6)C24—H24C0.9600
P4—C221.846 (5)C25—H25A0.9600
C1—C101.380 (6)C25—H25B0.9600
C1—C21.434 (6)C25—H25C0.9600
C2—C31.407 (6)C26—H26A0.9600
C2—C71.432 (6)C26—H26B0.9600
C3—C41.375 (6)C26—H26C0.9600
C4—C51.395 (6)C27—H27A0.9600
C4—H40.9300C27—H27B0.9600
C5—C61.348 (7)C27—H27C0.9600
C5—H50.9300C28—C331.384 (6)
C6—C71.417 (6)C28—C291.410 (6)
C6—H60.9300C29—C301.380 (7)
C7—C81.398 (7)C29—H290.9300
C8—C91.363 (7)C30—C311.367 (8)
C8—H80.9300C30—H300.9300
C9—C101.413 (6)C31—C321.376 (9)
C9—H90.9300C31—H310.9300
C10—H100.9300C32—C331.401 (8)
C11—C121.230 (6)C32—H320.9300
C12—C131.416 (6)C33—H330.9300
C13—C181.392 (6)C34—C351.390 (6)
C13—C141.402 (6)C34—C391.392 (6)
C14—C151.381 (7)C35—C361.376 (7)
C14—H140.9300C35—H350.9300
C15—C161.362 (8)C36—C371.358 (7)
C15—H150.9300C36—H360.9300
C16—C171.364 (8)C37—C381.375 (7)
C16—H160.9300C37—H370.9300
C17—C181.380 (6)C38—C391.379 (7)
C17—H170.9300C38—H380.9300
C18—H180.9300C39—H390.9300
C19—H19A0.9600
C11—Fe1—C194.06 (16)P3—C19—H19B109.5
C11—Fe1—P1173.69 (14)H19A—C19—H19B109.5
C1—Fe1—P184.07 (13)P3—C19—H19C109.5
C11—Fe1—P290.51 (13)H19A—C19—H19C109.5
C1—Fe1—P281.56 (13)H19B—C19—H19C109.5
P1—Fe1—P295.16 (5)P3—C20—H20A109.5
C11—Fe1—P481.08 (13)P3—C20—H20B109.5
C1—Fe1—P4171.99 (14)H20A—C20—H20B109.5
P1—Fe1—P4101.42 (5)P3—C20—H20C109.5
P2—Fe1—P492.07 (5)H20A—C20—H20C109.5
C11—Fe1—P379.82 (13)H20B—C20—H20C109.5
C1—Fe1—P380.56 (13)P3—C21—H21A109.5
P1—Fe1—P393.92 (5)P3—C21—H21B109.5
P2—Fe1—P3158.97 (5)H21A—C21—H21B109.5
P4—Fe1—P3104.66 (5)P3—C21—H21C109.5
C3—P1—C34107.7 (2)H21A—C21—H21C109.5
C3—P1—C28100.65 (19)H21B—C21—H21C109.5
C34—P1—C2896.3 (2)P4—C22—H22A109.5
C3—P1—Fe1102.26 (14)P4—C22—H22B109.5
C34—P1—Fe1120.34 (13)H22A—C22—H22B109.5
C28—P1—Fe1127.17 (15)P4—C22—H22C109.5
C27—P2—C26101.3 (3)H22A—C22—H22C109.5
C27—P2—C2597.7 (2)H22B—C22—H22C109.5
C26—P2—C2596.7 (3)P4—C23—H23A109.5
C27—P2—Fe1115.56 (18)P4—C23—H23B109.5
C26—P2—Fe1121.94 (19)H23A—C23—H23B109.5
C25—P2—Fe1119.18 (18)P4—C23—H23C109.5
C19—P3—C2199.2 (3)H23A—C23—H23C109.5
C19—P3—C2096.8 (3)H23B—C23—H23C109.5
C21—P3—C2097.1 (3)P4—C24—H24A109.5
C19—P3—Fe1121.53 (17)P4—C24—H24B109.5
C21—P3—Fe1121.69 (19)H24A—C24—H24B109.5
C20—P3—Fe1115.26 (19)P4—C24—H24C109.5
C24—P4—C2399.3 (3)H24A—C24—H24C109.5
C24—P4—C2297.7 (3)H24B—C24—H24C109.5
C23—P4—C2296.3 (3)P2—C25—H25A109.5
C24—P4—Fe1120.82 (17)P2—C25—H25B109.5
C23—P4—Fe1115.95 (19)H25A—C25—H25B109.5
C22—P4—Fe1121.8 (2)P2—C25—H25C109.5
C10—C1—C2115.8 (4)H25A—C25—H25C109.5
C10—C1—Fe1124.3 (3)H25B—C25—H25C109.5
C2—C1—Fe1119.9 (3)P2—C26—H26A109.5
C3—C2—C7118.3 (4)P2—C26—H26B109.5
C3—C2—C1120.2 (4)H26A—C26—H26B109.5
C7—C2—C1121.5 (4)P2—C26—H26C109.5
C4—C3—C2120.9 (4)H26A—C26—H26C109.5
C4—C3—P1126.9 (4)H26B—C26—H26C109.5
C2—C3—P1111.9 (3)P2—C27—H27A109.5
C3—C4—C5120.4 (4)P2—C27—H27B109.5
C3—C4—H4119.8H27A—C27—H27B109.5
C5—C4—H4119.8P2—C27—H27C109.5
C6—C5—C4120.6 (4)H27A—C27—H27C109.5
C6—C5—H5119.7H27B—C27—H27C109.5
C4—C5—H5119.7C33—C28—C29117.9 (4)
C5—C6—C7121.3 (4)C33—C28—P1120.4 (3)
C5—C6—H6119.4C29—C28—P1121.7 (4)
C7—C6—H6119.4C30—C29—C28120.5 (5)
C8—C7—C6122.5 (4)C30—C29—H29119.7
C8—C7—C2119.1 (4)C28—C29—H29119.7
C6—C7—C2118.5 (4)C31—C30—C29120.4 (5)
C9—C8—C7120.0 (4)C31—C30—H30119.8
C9—C8—H8120.0C29—C30—H30119.8
C7—C8—H8120.0C30—C31—C32120.8 (5)
C8—C9—C10120.6 (5)C30—C31—H31119.6
C8—C9—H9119.7C32—C31—H31119.6
C10—C9—H9119.7C31—C32—C33119.1 (6)
C1—C10—C9123.0 (4)C31—C32—H32120.4
C1—C10—H10118.5C33—C32—H32120.4
C9—C10—H10118.5C28—C33—C32121.2 (5)
C12—C11—Fe1174.3 (4)C28—C33—H33119.4
C11—C12—C13177.2 (5)C32—C33—H33119.4
C18—C13—C14116.5 (4)C35—C34—C39117.1 (4)
C18—C13—C12121.4 (4)C35—C34—P1119.0 (3)
C14—C13—C12122.1 (4)C39—C34—P1123.9 (3)
C15—C14—C13121.3 (5)C36—C35—C34121.0 (4)
C15—C14—H14119.4C36—C35—H35119.5
C13—C14—H14119.4C34—C35—H35119.5
C16—C15—C14120.5 (5)C37—C36—C35121.2 (5)
C16—C15—H15119.7C37—C36—H36119.4
C14—C15—H15119.7C35—C36—H36119.4
C15—C16—C17119.7 (5)C36—C37—C38119.1 (5)
C15—C16—H16120.2C36—C37—H37120.5
C17—C16—H16120.2C38—C37—H37120.5
C16—C17—C18120.5 (5)C37—C38—C39120.4 (5)
C16—C17—H17119.7C37—C38—H38119.8
C18—C17—H17119.7C39—C38—H38119.8
C17—C18—C13121.5 (5)C38—C39—C34121.2 (4)
C17—C18—H18119.3C38—C39—H39119.4
C13—C18—H18119.3C34—C39—H39119.4
P3—C19—H19A109.5
C1—Fe1—P1—C310.24 (18)C10—C1—C2—C71.6 (6)
P2—Fe1—P1—C391.18 (14)Fe1—C1—C2—C7179.1 (3)
P4—Fe1—P1—C3175.66 (14)C7—C2—C3—C43.3 (6)
P3—Fe1—P1—C369.83 (14)C1—C2—C3—C4177.9 (4)
C1—Fe1—P1—C34129.5 (2)C7—C2—C3—P1171.0 (3)
P2—Fe1—P1—C34149.58 (16)C1—C2—C3—P17.8 (5)
P4—Fe1—P1—C3456.41 (17)C34—P1—C3—C446.0 (4)
P3—Fe1—P1—C3449.41 (16)C28—P1—C3—C454.1 (4)
C1—Fe1—P1—C28103.5 (2)Fe1—P1—C3—C4173.8 (4)
P2—Fe1—P1—C2822.53 (19)C34—P1—C3—C2140.1 (3)
P4—Fe1—P1—C2870.63 (19)C28—P1—C3—C2119.7 (3)
P3—Fe1—P1—C28176.46 (19)Fe1—P1—C3—C212.3 (3)
C11—Fe1—P2—C275.6 (3)C2—C3—C4—C50.8 (7)
C1—Fe1—P2—C2788.4 (2)P1—C3—C4—C5172.6 (4)
P1—Fe1—P2—C27171.6 (2)C3—C4—C5—C61.6 (7)
P4—Fe1—P2—C2786.7 (2)C4—C5—C6—C71.3 (8)
P3—Fe1—P2—C2756.4 (3)C5—C6—C7—C8178.7 (5)
C11—Fe1—P2—C26118.1 (3)C5—C6—C7—C21.2 (7)
C1—Fe1—P2—C26147.9 (2)C3—C2—C7—C8176.5 (4)
P1—Fe1—P2—C2664.7 (2)C1—C2—C7—C82.3 (6)
P4—Fe1—P2—C2637.0 (2)C3—C2—C7—C63.5 (6)
P3—Fe1—P2—C26179.9 (2)C1—C2—C7—C6177.8 (4)
C11—Fe1—P2—C25121.5 (2)C6—C7—C8—C9179.6 (5)
C1—Fe1—P2—C2527.5 (2)C2—C7—C8—C90.4 (7)
P1—Fe1—P2—C2555.7 (2)C7—C8—C9—C102.0 (8)
P4—Fe1—P2—C25157.4 (2)C2—C1—C10—C90.9 (7)
P3—Fe1—P2—C2559.5 (2)Fe1—C1—C10—C9178.4 (4)
C11—Fe1—P3—C19165.2 (3)C8—C9—C10—C12.8 (8)
C1—Fe1—P3—C1969.2 (3)C18—C13—C14—C150.1 (7)
P1—Fe1—P3—C1914.1 (2)C12—C13—C14—C15179.3 (4)
P2—Fe1—P3—C19101.4 (3)C13—C14—C15—C161.3 (7)
P4—Fe1—P3—C19117.0 (2)C14—C15—C16—C171.0 (8)
C11—Fe1—P3—C2168.0 (3)C15—C16—C17—C180.7 (8)
C1—Fe1—P3—C21163.9 (3)C16—C17—C18—C132.1 (8)
P1—Fe1—P3—C21112.8 (2)C14—C13—C18—C171.8 (7)
P2—Fe1—P3—C21131.8 (3)C12—C13—C18—C17177.6 (4)
P4—Fe1—P3—C219.9 (2)C3—P1—C28—C33157.4 (4)
C11—Fe1—P3—C2048.9 (3)C34—P1—C28—C3348.0 (4)
C1—Fe1—P3—C2047.0 (3)Fe1—P1—C28—C3388.2 (4)
P1—Fe1—P3—C20130.3 (2)C3—P1—C28—C2922.2 (4)
P2—Fe1—P3—C2014.9 (3)C34—P1—C28—C29131.6 (4)
P4—Fe1—P3—C20126.8 (2)Fe1—P1—C28—C2992.3 (4)
C11—Fe1—P4—C24165.1 (3)C33—C28—C29—C301.1 (7)
P1—Fe1—P4—C2420.8 (2)P1—C28—C29—C30179.3 (4)
P2—Fe1—P4—C2474.9 (2)C28—C29—C30—C310.2 (9)
P3—Fe1—P4—C24117.9 (2)C29—C30—C31—C320.0 (10)
C11—Fe1—P4—C2345.2 (2)C30—C31—C32—C330.7 (11)
P1—Fe1—P4—C23140.7 (2)C29—C28—C33—C321.8 (8)
P2—Fe1—P4—C2345.0 (2)P1—C28—C33—C32178.6 (5)
P3—Fe1—P4—C23122.1 (2)C31—C32—C33—C281.7 (10)
C11—Fe1—P4—C2271.3 (3)C3—P1—C34—C35126.4 (4)
P1—Fe1—P4—C22102.8 (3)C28—P1—C34—C35130.3 (4)
P2—Fe1—P4—C22161.5 (3)Fe1—P1—C34—C3510.0 (4)
P3—Fe1—P4—C225.7 (3)C3—P1—C34—C3954.7 (4)
C11—Fe1—C1—C1015.3 (4)C28—P1—C34—C3948.6 (4)
P1—Fe1—C1—C10170.7 (4)Fe1—P1—C34—C39171.2 (3)
P2—Fe1—C1—C1074.6 (4)C39—C34—C35—C360.2 (7)
P3—Fe1—C1—C1094.3 (4)P1—C34—C35—C36178.7 (4)
C11—Fe1—C1—C2165.4 (3)C34—C35—C36—C370.9 (8)
P1—Fe1—C1—C28.5 (3)C35—C36—C37—C381.2 (8)
P2—Fe1—C1—C2104.7 (3)C36—C37—C38—C390.8 (8)
P3—Fe1—C1—C286.5 (3)C37—C38—C39—C340.2 (8)
C10—C1—C2—C3177.1 (4)C35—C34—C39—C380.1 (7)
Fe1—C1—C2—C32.2 (5)P1—C34—C39—C38179.0 (4)

Experimental details

Crystal data
Chemical formula[Fe(C8H5)(C22H16P)(C3H9P)3]
Mr696.50
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)9.6667 (18), 19.965 (4), 19.035 (4)
β (°) 99.322 (7)
V3)3625.2 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.15 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.913, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
19984, 5830, 4723
Rint0.066
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.098, 1.00
No. of reflections5830
No. of parameters406
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.49
Absolute structureFlack (1983); 2641 Friedel pairs
Absolute structure parameter0.045 (17)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999, SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Financial support of this work by the China Postdoctoral Science Foundation and the Shandong University Postdoctoral Science Foundation is acknowledged.

References

First citationBeck, R., Zheng, T., Sun, H., Li, X., Flörke, U. & Klein, H.-F. (2008). J. Organomet. Chem. 693, 3471–3478.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBritovsek, G. J. P., Gibson, V. C., Kimberely, B. S., Maddox, P. J., Solan, G. A., White, A. J. P. & Williams, D. J. (1998). Chem. Commun. pp. 849–850.  Web of Science CSD CrossRef Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarré, F. H., Chuit, C., Corriu, R. J. P., Douglas, W. E., Guy, D. M. H. & Reye, C. (2000). Eur. J. Inorg. Chem. pp. 647–653.  Google Scholar
First citationCostuas, K., Paul, F., Toupet, L., Halet, J.-F. & Lapinte, C. (2004). Organometallics, 23, 2053–2068.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKarsch, H. H. (1977). Chem. Ber. 110, 2699–2711.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmall, B. L., Brookhart, M. & Bennett, A. M. A. (1998). J. Am. Chem. Soc. 102, 4049–4050.  Web of Science CSD CrossRef Google Scholar
First citationVenturi, C., Bellachioma, G., Cardaci, G. & Macchioni, A. (2004). Inorg. Chim. Acta, 357, 3712–3720.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds