organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Chloro­benzyl­­idene)-2-hy­droxy­benzohydrazide

aDepartment of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China
*Correspondence e-mail: shaosic@fync.edu.cn

(Received 10 November 2008; accepted 25 November 2008; online 10 December 2008)

The title mol­ecule, C14H11ClN2O2, adopts a trans configuration with respect to the C=N double bond. An intra­molecular N—H⋯O hydrogen bond contributes to mol­ecular conformation and the two benzene rings form a dihedral angle of 17.9 (8)°. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into chains running along [10[\overline{1}]].

Related literature

For general background to hydrazones and Schiff bases and their potential pharmacological and anti­tumor properties, see: Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Khattab (2005[Khattab, S. N. (2005). Molecules, 10, 1218-1228.]); Kucukguzel et al. (2006[Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]); Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClN2O2

  • Mr = 274.70

  • Monoclinic, P 21 /n

  • a = 4.8557 (6) Å

  • b = 24.588 (3) Å

  • c = 11.0903 (13) Å

  • β = 99.710 (2)°

  • V = 1305.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 (2) K

  • 0.10 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.977

  • 11227 measured reflections

  • 3126 independent reflections

  • 2402 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.169

  • S = 1.12

  • 3126 reflections

  • 180 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2⋯O1 0.80 (3) 2.01 (3) 2.624 (2) 134 (2)
O1—H1⋯O2i 0.782 (18) 1.90 (2) 2.647 (2) 159 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones and Schiff bases have attracted much attention for their excellent biological properties, especially for their potential pharmacological and antitumor properties (Kucukguzel et al., 2006; Khattab, 2005; Karthikeyan et al., 2006; Okabe et al., 1993). We are interested in this fields. As a part of ongoing study, we report herein the crystal structure of the title compound, (I).

The molecular structure of (I) (Fig. 1) displays a trans configuration about the C=N bond. Intramolecular N—H···O hydrogen bond (Table 1) contributes to molecular conformation - the dihedral angle between the two benzene rings is 17.9 (8)°. In the crystal, the molecules are linked into chains by intermolecular O—H···O hydrongen bonds (Table 1).

Related literature top

For general background to hydrazones and Schiff bases and their potential pharmacological and antitumor properties, see: Karthikeyan et al. (2006); Khattab (2005); Kucukguzel et al. (2006); Okabe et al. (1993).

Experimental top

Equivalent amounts of 2-Hydroxybenzohydrazide and 3-chlorobenzohydrazide were reacted in ethanol (10 mL) for 1 h. After allowing the resulting solution to stand in air for 10 d colourless block-shaped crystals were formed on slow evaporation of the solvent.

Refinement top

C-bound H atoms were placed in calculated positions (C—H = 0.93 Å) and constrained to ride on their parent atom, with Uiso(H) = 1.2Ueq(C). The remaining H atoms were located in a difference map and refined isotropically.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
N'-(4-Chlorobenzylidene)-2-hydroxybenzohydrazide top
Crystal data top
C14H11ClN2O2F(000) = 568
Mr = 274.70Dx = 1.398 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.8557 (6) ÅCell parameters from 986 reflections
b = 24.588 (3) Åθ = 2.1–28.2°
c = 11.0903 (13) ŵ = 0.29 mm1
β = 99.710 (2)°T = 298 K
V = 1305.1 (3) Å3Block, colourless
Z = 40.10 × 0.10 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3126 independent reflections
Radiation source: fine-focus sealed tube2402 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 28.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.972, Tmax = 0.977k = 3231
11227 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0705P)2 + 0.4971P]
where P = (Fo2 + 2Fc2)/3
3126 reflections(Δ/σ)max = 0.072
180 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C14H11ClN2O2V = 1305.1 (3) Å3
Mr = 274.70Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.8557 (6) ŵ = 0.29 mm1
b = 24.588 (3) ÅT = 298 K
c = 11.0903 (13) Å0.10 × 0.10 × 0.08 mm
β = 99.710 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3126 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2402 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.977Rint = 0.027
11227 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0671 restraint
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.38 e Å3
3126 reflectionsΔρmin = 0.22 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.39445 (17)1.00945 (3)0.73436 (9)0.0851 (3)
O10.9734 (4)0.73796 (8)0.50406 (15)0.0610 (5)
N10.6996 (4)0.76768 (8)0.67797 (18)0.0476 (5)
O20.8154 (4)0.72610 (8)0.85960 (14)0.0618 (5)
N20.5245 (4)0.80391 (8)0.72149 (16)0.0465 (5)
C70.8405 (4)0.73021 (9)0.75183 (18)0.0442 (5)
C11.0293 (4)0.69349 (9)0.69718 (18)0.0411 (5)
C80.3878 (5)0.83421 (10)0.6399 (2)0.0507 (6)
H80.41120.82940.55910.061*
C31.2815 (5)0.66229 (11)0.5401 (2)0.0531 (6)
H31.32520.66570.46190.064*
C21.0942 (4)0.69832 (9)0.57896 (18)0.0423 (5)
C41.4019 (5)0.62186 (11)0.6157 (2)0.0588 (6)
H41.52990.59840.58920.071*
C90.1965 (5)0.87608 (10)0.6674 (2)0.0485 (5)
C61.1533 (5)0.65119 (11)0.7705 (2)0.0562 (6)
H61.11120.64710.84870.067*
C130.0225 (6)0.93008 (11)0.8045 (3)0.0648 (7)
H130.04530.93890.88380.078*
C140.1588 (6)0.88896 (11)0.7845 (2)0.0571 (6)
H140.25610.86980.85060.069*
C120.1684 (5)0.95778 (10)0.7069 (3)0.0579 (6)
C51.3350 (6)0.61556 (12)0.7309 (2)0.0623 (7)
H51.41270.58730.78120.075*
C100.0436 (6)0.90483 (13)0.5712 (3)0.0713 (8)
H100.06430.89630.49150.086*
C110.1375 (6)0.94547 (13)0.5903 (3)0.0763 (9)
H110.23770.96440.52450.092*
H11.053 (6)0.7435 (12)0.449 (2)0.081 (10)*
H20.708 (5)0.7692 (10)0.607 (2)0.051 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0716 (5)0.0602 (5)0.1249 (8)0.0104 (3)0.0203 (5)0.0032 (4)
O10.0751 (11)0.0777 (13)0.0384 (9)0.0191 (9)0.0334 (8)0.0132 (8)
N10.0595 (11)0.0569 (12)0.0316 (9)0.0026 (9)0.0223 (8)0.0021 (8)
O20.0829 (12)0.0735 (12)0.0359 (8)0.0106 (9)0.0301 (8)0.0019 (8)
N20.0528 (10)0.0519 (11)0.0384 (10)0.0043 (8)0.0186 (8)0.0053 (8)
C70.0513 (12)0.0507 (13)0.0346 (10)0.0096 (10)0.0191 (9)0.0043 (9)
C10.0452 (11)0.0483 (12)0.0321 (10)0.0081 (9)0.0136 (8)0.0037 (9)
C80.0585 (13)0.0622 (15)0.0342 (11)0.0036 (11)0.0154 (10)0.0046 (10)
C30.0599 (13)0.0668 (16)0.0365 (11)0.0045 (11)0.0192 (10)0.0054 (11)
C20.0459 (11)0.0513 (13)0.0320 (10)0.0042 (9)0.0133 (8)0.0009 (9)
C40.0632 (15)0.0669 (16)0.0471 (13)0.0129 (12)0.0117 (11)0.0114 (12)
C90.0514 (12)0.0545 (14)0.0401 (11)0.0073 (10)0.0094 (9)0.0007 (10)
C60.0744 (16)0.0621 (15)0.0352 (11)0.0040 (12)0.0182 (11)0.0028 (11)
C130.0829 (18)0.0613 (16)0.0554 (15)0.0062 (14)0.0266 (13)0.0019 (13)
C140.0732 (16)0.0579 (15)0.0432 (13)0.0118 (12)0.0182 (11)0.0090 (11)
C120.0519 (13)0.0492 (14)0.0732 (17)0.0039 (11)0.0120 (12)0.0066 (12)
C50.0808 (18)0.0614 (16)0.0441 (13)0.0150 (13)0.0084 (12)0.0032 (12)
C100.0768 (18)0.090 (2)0.0453 (14)0.0106 (16)0.0059 (12)0.0040 (14)
C110.0708 (18)0.090 (2)0.0633 (18)0.0143 (16)0.0019 (14)0.0168 (16)
Geometric parameters (Å, º) top
Cl1—C121.739 (3)C4—C51.379 (3)
O1—C21.349 (3)C4—H40.9300
O1—H10.782 (18)C9—C141.379 (3)
N1—C71.341 (3)C9—C101.386 (4)
N1—N21.374 (3)C6—C51.367 (3)
N1—H20.80 (3)C6—H60.9300
O2—C71.226 (2)C13—C121.371 (4)
N2—C81.269 (3)C13—C141.383 (4)
C7—C11.487 (3)C13—H130.9300
C1—C61.393 (3)C14—H140.9300
C1—C21.404 (3)C12—C111.360 (4)
C8—C91.453 (3)C5—H50.9300
C8—H80.9300C10—C111.371 (4)
C3—C41.367 (3)C10—H100.9300
C3—C21.389 (3)C11—H110.9300
C3—H30.9300
C2—O1—H1112 (2)C14—C9—C8123.4 (2)
C7—N1—N2120.86 (18)C10—C9—C8118.6 (2)
C7—N1—H2122.0 (18)C5—C6—C1122.0 (2)
N2—N1—H2117.1 (18)C5—C6—H6119.0
C8—N2—N1114.23 (18)C1—C6—H6119.0
O2—C7—N1121.9 (2)C12—C13—C14119.7 (2)
O2—C7—C1121.1 (2)C12—C13—H13120.2
N1—C7—C1117.02 (17)C14—C13—H13120.2
C6—C1—C2117.7 (2)C9—C14—C13120.5 (2)
C6—C1—C7116.82 (18)C9—C14—H14119.7
C2—C1—C7125.5 (2)C13—C14—H14119.7
N2—C8—C9122.9 (2)C11—C12—C13121.0 (3)
N2—C8—H8118.6C11—C12—Cl1120.2 (2)
C9—C8—H8118.6C13—C12—Cl1118.8 (2)
C4—C3—C2120.5 (2)C6—C5—C4119.4 (2)
C4—C3—H3119.7C6—C5—H5120.3
C2—C3—H3119.7C4—C5—H5120.3
O1—C2—C3120.60 (18)C11—C10—C9121.8 (3)
O1—C2—C1119.55 (19)C11—C10—H10119.1
C3—C2—C1119.9 (2)C9—C10—H10119.1
C3—C4—C5120.4 (2)C12—C11—C10119.1 (3)
C3—C4—H4119.8C12—C11—H11120.5
C5—C4—H4119.8C10—C11—H11120.5
C14—C9—C10117.9 (2)
C7—N1—N2—C8174.7 (2)N2—C8—C9—C10176.0 (2)
N2—N1—C7—O21.3 (3)C2—C1—C6—C50.7 (4)
N2—N1—C7—C1178.79 (18)C7—C1—C6—C5178.7 (2)
O2—C7—C1—C66.2 (3)C10—C9—C14—C131.2 (4)
N1—C7—C1—C6173.7 (2)C8—C9—C14—C13178.6 (2)
O2—C7—C1—C2173.2 (2)C12—C13—C14—C90.8 (4)
N1—C7—C1—C26.9 (3)C14—C13—C12—C110.1 (4)
N1—N2—C8—C9178.5 (2)C14—C13—C12—Cl1179.8 (2)
C4—C3—C2—O1179.4 (2)C1—C6—C5—C41.0 (4)
C4—C3—C2—C10.5 (4)C3—C4—C5—C62.0 (4)
C6—C1—C2—O1178.4 (2)C14—C9—C10—C110.9 (4)
C7—C1—C2—O12.2 (3)C8—C9—C10—C11178.9 (3)
C6—C1—C2—C31.5 (3)C13—C12—C11—C100.2 (4)
C7—C1—C2—C3177.9 (2)Cl1—C12—C11—C10179.5 (2)
C2—C3—C4—C51.3 (4)C9—C10—C11—C120.2 (5)
N2—C8—C9—C144.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O10.80 (3)2.01 (3)2.624 (2)134 (2)
O1—H1···O2i0.78 (2)1.90 (2)2.647 (2)159 (3)
Symmetry code: (i) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H11ClN2O2
Mr274.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)4.8557 (6), 24.588 (3), 11.0903 (13)
β (°) 99.710 (2)
V3)1305.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.10 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
11227, 3126, 2402
Rint0.027
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.169, 1.12
No. of reflections3126
No. of parameters180
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.22

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O10.80 (3)2.01 (3)2.624 (2)134 (2)
O1—H1···O2i0.782 (18)1.90 (2)2.647 (2)159 (3)
Symmetry code: (i) x+1/2, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Anhui Provincial University College (grant No. 2005 KJ137).

References

First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhattab, S. N. (2005). Molecules, 10, 1218–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science CrossRef PubMed Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds