metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­aqua­chlorido(1,10-phenanthroline-κ2N,N′)cobalt(II) chloride monohydrate

aSchool of Science, North University of China, Taiyuan 030051, People's Republic of China, bSchool of Mechatronic Engineering, North University of China, Taiyuan 030051, People's Republic of China, and cDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: xiangyz_2008@163.com

(Received 14 November 2008; accepted 15 December 2008; online 20 December 2008)

In the title compound, [CoCl(C12H8N2)(H2O)3]Cl·H2O, the CoII ion is coordinated by two N atoms from the 1,10-phenanthroline ligand [Co—N = 2.125 (6) and 2.146 (6) Å], one chloride ligand [Co—Cl = 2.459 (2)Å] and three water mol­ecules [Co—O = 2.070 (5)–2.105 (5)Å] in a distorted octa­hedral geometry. Inter­molecular O—H⋯Cl and O—H⋯O hydrogen bonds form an extensive three-dimensional hydrogen-bonding network, which consolidates the crystal packing.

Related literature

For related crystal structures, see: Liu et al. (2006[Liu, J.-T., Fan, S.-D. & Li, D.-Q. (2006). Acta Cryst. E62, m2165-m2166.]); Zhang et al. (1999[Zhang, C., Yu, K., Wu, D. & Zhao, C. (1999). Acta Cryst. C55, 1815-1817.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl(C12H8N2)(H2O)3]Cl·H2O

  • Mr = 382.10

  • Monoclinic, P 21 /c

  • a = 7.646 (4) Å

  • b = 12.426 (6) Å

  • c = 16.987 (8) Å

  • β = 103.54 (2)°

  • V = 1569.1 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 273 (2) K

  • 0.37 × 0.25 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.616, Tmax = 0.770

  • 6533 measured reflections

  • 2733 independent reflections

  • 1564 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.177

  • S = 1.04

  • 2733 reflections

  • 198 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4 0.85 1.93 2.693 (9) 149
O1—H1B⋯Cl2 0.85 2.55 3.258 (6) 141
O2—H2A⋯Cl1i 0.85 2.31 3.139 (6) 166
O2—H2B⋯Cl2i 0.85 2.29 3.119 (6) 164
O3—H3A⋯Cl2ii 0.85 2.33 3.114 (6) 153
O3—H3B⋯Cl1ii 0.85 2.30 3.128 (6) 166
O4—H4A⋯Cl2iii 0.85 2.34 3.185 (8) 170
O4—H4B⋯Cl1ii 0.85 2.58 3.278 (8) 141
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+2, -y+1, -z+2; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structures of some tetraaqua(1,10-phenanthroline) metal ionic complexes with different anions have been reported (Liu et al., 2006; Zhang et al., 1999). In our study in this field, we select 1,10-phenanthroline as the co-ligand to continue our exploration of the Co complexes. Herein we report the structure of the title compound (I), which was characterized by elemental analyses and X-ray crystallography diffraction.

In (I) (Fig. 1), each CoII ion is coordinated by two N atoms from 1,10-phenanthroline ligand [Co—N 2.125 (6), 2.146 (6) Å], one chlorine anion [Co—Cl 2.459 (2) Å] and three water molecules [Co—O 2.070 (5)–2.105 (5) Å] in a distorted octahedral geometry. Two aqua O atoms and two N atoms from 1,10-phenanthroline ligand define the special position on a mirror plane. One aqua group and chlorine anion fill the axial apical positions. The intermolecular O—H···Cl and O—H···O hydrogen bonds (Table 1) form an extensive three-dimensional hydrogen-bonding network, which consolidate the crystal packing.

Related literature top

For related crystal structures, see: Liu et al. (2006); Zhang et al. (1999).

Experimental top

A mixture of Cu(Cl)2*3H2O(168 mg, 1 mmol) and 1,10-phenanthroline(185 mg, 1 mmol) in methanol(30 ml) was placed in a Teflon-lined stainless steel Parr bomb that was heated at 423 K for 72 h. The bomb was then cooled down to the room temperature, the solution was filtered. The solvent was removed from the filtrate under vacuum, and the solid residue was recrystallized from diethyl ether; blue crystals suitable for X-Ray diffraction study were obtained. Yield, 0.724 g, 81%. m.p. 566 K. Analysis, calculated for C12H16Cl2CoN2O4: C 37.72, H 4.22, N 7.33; found: C 37.53, H 4.68, N 7.17%. The elemental analyses were performed with a Perkine Elemer PE2400II instrument.

Refinement top

Water H atoms were located in a differece map and were isotropically refined with an O—H strict distance restraint of 0.85/%A. H atoms bound to C atoms were placed in calculated positions(C—H = 0.93/%A) and refined in the riding-model approximation, Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines denote hydrogen bonds.
Triaquachlorido(1,10-phenanthroline-κ2N,N')cobalt(II) chloride monohydrate top
Crystal data top
[CoCl(C12H8N2)(H2O)3]Cl·H2OF(000) = 780
Mr = 382.10Dx = 1.617 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.646 (4) ÅCell parameters from 580 reflections
b = 12.426 (6) Åθ = 3.0–20.1°
c = 16.987 (8) ŵ = 1.45 mm1
β = 103.54 (2)°T = 273 K
V = 1569.1 (13) Å3Block, blue
Z = 40.37 × 0.25 × 0.19 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2733 independent reflections
Radiation source: fine-focus sealed tube1564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 95
Tmin = 0.616, Tmax = 0.770k = 1014
6533 measured reflectionsl = 1720
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0517P)2 + 4.0479P]
where P = (Fo2 + 2Fc2)/3
2733 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.67 e Å3
13 restraintsΔρmin = 0.56 e Å3
Crystal data top
[CoCl(C12H8N2)(H2O)3]Cl·H2OV = 1569.1 (13) Å3
Mr = 382.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.646 (4) ŵ = 1.45 mm1
b = 12.426 (6) ÅT = 273 K
c = 16.987 (8) Å0.37 × 0.25 × 0.19 mm
β = 103.54 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2733 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1564 reflections with I > 2σ(I)
Tmin = 0.616, Tmax = 0.770Rint = 0.080
6533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07113 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.04Δρmax = 0.67 e Å3
2733 reflectionsΔρmin = 0.56 e Å3
198 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.75359 (13)0.66886 (9)0.99070 (6)0.0342 (3)
Cl10.6997 (3)0.49910 (16)0.91423 (11)0.0431 (5)
Cl20.8145 (3)0.34056 (18)1.16347 (12)0.0536 (6)
N10.6918 (8)0.7697 (5)0.8867 (4)0.0360 (15)
N20.7887 (8)0.8255 (5)1.0452 (4)0.0405 (16)
O10.8190 (8)0.5892 (4)1.1032 (3)0.0478 (15)
H1A0.90030.59201.14690.15 (6)*
H1B0.77970.52511.09580.10 (4)*
O20.4845 (7)0.6729 (4)0.9965 (3)0.0459 (13)
H2A0.45270.62141.02310.06 (3)*
H2B0.41850.67550.94880.05 (3)*
O31.0230 (7)0.6657 (4)0.9883 (3)0.0456 (14)
H3A1.03720.67880.94110.05 (3)*
H3B1.11210.62891.01370.09 (4)*
O41.1261 (10)0.6517 (6)1.2062 (4)0.075 (2)
H4A1.15660.70131.24120.06 (3)*
H4B1.21710.62961.19010.16 (7)*
C10.6476 (11)0.7393 (8)0.8103 (5)0.049 (2)
H10.63940.66640.79790.059*
C20.6123 (11)0.8160 (7)0.7468 (5)0.050 (2)
H20.58100.79330.69310.060*
C30.6243 (11)0.9222 (7)0.7645 (5)0.052 (2)
H30.60170.97260.72280.062*
C40.6706 (11)0.9573 (7)0.8456 (5)0.046 (2)
C50.7032 (10)0.8787 (6)0.9056 (5)0.037 (2)
C60.7525 (9)0.9047 (6)0.9885 (5)0.0338 (17)
C70.7636 (10)1.0150 (7)1.0107 (5)0.044 (2)
C80.8142 (12)1.0398 (8)1.0931 (6)0.062 (3)
H80.82321.11111.11020.075*
C90.8501 (13)0.9583 (8)1.1481 (6)0.062 (3)
H90.88410.97401.20310.074*
C100.8363 (10)0.8527 (7)1.1225 (5)0.049 (2)
H100.86160.79851.16120.058*
C110.6849 (12)1.0667 (7)0.8682 (6)0.058 (3)
H110.66451.11990.82850.070*
C120.7284 (13)1.0944 (7)0.9475 (6)0.063 (3)
H120.73571.16690.96140.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0399 (6)0.0288 (6)0.0335 (6)0.0003 (5)0.0080 (4)0.0012 (5)
Cl10.0576 (13)0.0299 (11)0.0394 (12)0.0009 (9)0.0068 (9)0.0034 (10)
Cl20.0673 (14)0.0495 (14)0.0443 (12)0.0020 (11)0.0133 (10)0.0060 (12)
N10.040 (4)0.033 (4)0.036 (4)0.000 (3)0.011 (3)0.002 (3)
N20.043 (4)0.034 (4)0.045 (4)0.001 (3)0.009 (3)0.003 (4)
O10.068 (4)0.040 (4)0.034 (3)0.006 (3)0.009 (3)0.002 (3)
O20.050 (3)0.042 (4)0.048 (3)0.000 (3)0.016 (3)0.004 (3)
O30.043 (3)0.055 (4)0.042 (3)0.006 (3)0.015 (2)0.007 (3)
O40.080 (5)0.080 (5)0.058 (4)0.008 (4)0.001 (4)0.028 (4)
C10.058 (6)0.059 (6)0.030 (5)0.005 (4)0.010 (4)0.004 (4)
C20.061 (6)0.055 (6)0.032 (4)0.003 (4)0.008 (4)0.004 (4)
C30.062 (6)0.040 (6)0.052 (6)0.003 (4)0.012 (4)0.005 (5)
C40.046 (5)0.044 (6)0.047 (5)0.005 (4)0.009 (4)0.006 (4)
C50.036 (4)0.025 (4)0.055 (6)0.000 (3)0.018 (4)0.009 (4)
C60.038 (4)0.022 (4)0.042 (5)0.001 (3)0.010 (3)0.001 (4)
C70.043 (5)0.032 (5)0.057 (6)0.001 (4)0.013 (4)0.005 (4)
C80.078 (7)0.034 (6)0.074 (7)0.002 (5)0.014 (5)0.023 (5)
C90.080 (7)0.045 (6)0.059 (6)0.001 (5)0.016 (5)0.021 (5)
C100.053 (5)0.054 (6)0.038 (5)0.004 (4)0.009 (4)0.004 (5)
C110.072 (7)0.038 (6)0.062 (7)0.009 (5)0.012 (5)0.020 (5)
C120.075 (7)0.030 (5)0.082 (7)0.002 (5)0.013 (5)0.004 (6)
Geometric parameters (Å, º) top
Co1—O32.071 (5)C1—H10.9300
Co1—O22.084 (5)C2—C31.35 (1)
Co1—O12.106 (5)C2—H20.9301
Co1—N12.127 (6)C3—C41.41 (1)
Co1—N22.145 (7)C3—H30.9300
Co1—Cl12.461 (2)C4—C51.39 (1)
N1—C11.317 (9)C4—C111.41 (1)
N1—C51.390 (9)C5—C61.41 (1)
N2—C101.321 (9)C6—C71.42 (1)
N2—C61.361 (9)C7—C81.40 (1)
O1—H1A0.8500C7—C121.44 (1)
O1—H1B0.8501C8—C91.36 (1)
O2—H2A0.8500C8—H80.9301
O2—H2B0.8498C9—C101.38 (1)
O3—H3A0.8500C9—H90.9301
O3—H3B0.8500C10—H100.9300
O4—H4A0.8500C11—C121.36 (1)
O4—H4B0.8500C11—H110.9300
C1—C21.42 (1)C12—H120.9300
O3—Co1—O2178.4 (2)C1—C2—H2120.2
O3—Co1—O189.0 (2)C2—C3—C4120.5 (8)
O2—Co1—O189.7 (2)C2—C3—H3119.7
O3—Co1—N191.3 (2)C4—C3—H3119.7
O2—Co1—N189.8 (2)C5—C4—C3117.4 (8)
O1—Co1—N1171.9 (2)C5—C4—C11119.3 (8)
O3—Co1—N290.1 (2)C3—C4—C11123.3 (8)
O2—Co1—N289.0 (2)N1—C5—C4121.6 (8)
O1—Co1—N293.2 (2)N1—C5—C6116.3 (7)
N1—Co1—N278.8 (2)C4—C5—C6122.0 (7)
C1—N1—C5119.6 (7)N2—C6—C5120.3 (7)
C1—N1—Co1127.3 (6)N2—C6—C7121.4 (7)
C5—N1—Co1113.1 (5)C5—C6—C7118.3 (7)
C10—N2—C6118.8 (7)C8—C7—C6117.7 (8)
C10—N2—Co1129.7 (6)C8—C7—C12123.8 (8)
C6—N2—Co1111.5 (5)C6—C7—C12118.4 (8)
Co1—O1—H1A138.0C9—C8—C7119.2 (8)
Co1—O1—H1B107.8C9—C8—H8120.4
H1A—O1—H1B109.2C7—C8—H8120.4
Co1—O2—H2A114.5C8—C9—C10120.2 (9)
Co1—O2—H2B109.1C8—C9—H9119.9
H2A—O2—H2B110.8C10—C9—H9119.9
Co1—O3—H3A111.3N2—C10—C9122.7 (9)
Co1—O3—H3B133.1N2—C10—H10118.7
H3A—O3—H3B108.6C9—C10—H10118.7
H4A—O4—H4B110.4C12—C11—C4120.0 (8)
N1—C1—C2121.2 (8)C12—C11—H11120.0
N1—C1—H1119.4C4—C11—H11120.0
C2—C1—H1119.4C11—C12—C7121.9 (9)
C3—C2—C1119.7 (8)C11—C12—H12119.1
C3—C2—H2120.2C7—C12—H12119.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.851.932.693 (9)149
O1—H1B···Cl20.852.553.258 (6)141
O2—H2A···Cl1i0.852.313.139 (6)166
O2—H2B···Cl2i0.852.293.119 (6)164
O3—H3A···Cl2ii0.852.333.114 (6)153
O3—H3B···Cl1ii0.852.303.128 (6)166
O4—H4A···Cl2iii0.852.343.185 (8)170
O4—H4B···Cl1ii0.852.583.278 (8)141
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+2; (iii) x+2, y+1/2, z+5/2.

Experimental details

Crystal data
Chemical formula[CoCl(C12H8N2)(H2O)3]Cl·H2O
Mr382.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)7.646 (4), 12.426 (6), 16.987 (8)
β (°) 103.54 (2)
V3)1569.1 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.37 × 0.25 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.616, 0.770
No. of measured, independent and
observed [I > 2σ(I)] reflections
6533, 2733, 1564
Rint0.080
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.177, 1.04
No. of reflections2733
No. of parameters198
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.56

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.851.932.693 (9)148.50
O1—H1B···Cl20.852.553.258 (6)141.22
O2—H2A···Cl1i0.852.313.139 (6)166.35
O2—H2B···Cl2i0.852.293.119 (6)164.31
O3—H3A···Cl2ii0.852.333.114 (6)153.01
O3—H3B···Cl1ii0.852.303.128 (6)166.26
O4—H4A···Cl2iii0.852.343.185 (8)169.75
O4—H4B···Cl1ii0.852.583.278 (8)140.74
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+2; (iii) x+2, y+1/2, z+5/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China for financial support.

References

First citationLiu, J.-T., Fan, S.-D. & Li, D.-Q. (2006). Acta Cryst. E62, m2165–m2166.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZhang, C., Yu, K., Wu, D. & Zhao, C. (1999). Acta Cryst. C55, 1815–1817.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds