metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido[bis­­(η5-cyclo­penta­dien­yl)di­methyl­silane]zirconium(IV)

aDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Nám. Čs. legií 565, Pardubice 532 10, Czech Republic
*Correspondence e-mail: milan.erben@upce.cz

(Received 1 December 2008; accepted 3 December 2008; online 17 December 2008)

The title mol­ecule, [ZrBr2(C12H14Si)], possesses a crystallographically imposed twofold rotational symmetry with the rotation axis passing through the Zr and Si atoms. The ZrIV centre is in a distorted tetra­hedral environment defined by two Cp rings of chelating organic ligands and two Br anions. Two five-membered rings form a dihedral angle of 59.7 (2)°. Unequal Zr—C bonds [2.471 (3)–2.556 (3) Å] in the mol­ecule indicate that the inter­action of the central metal with the [(C5H4)2SiMe2]2− ligand contains noticeable η3-allyl and η2-olefin contributions.

Related literature

For related ansa-zirconocenes, see, for example: Bajgur et al. (1985[Bajgur, C. S., Tikkanen, W. R. & Petersen, J. L. (1985). Inorg. Chem. 24, 2539-2546.]), Borrelli et al. (2002[Borrelli, M., Busico, V., Cipulo, R. & Ronca, S. (2002). Macromolecules, 35, 2835-2844.]).

[Scheme 1]

Experimental

Crystal data
  • [ZrBr2(C12H14Si)]

  • Mr = 437.36

  • Monoclinic, C 2/c

  • a = 13.6160 (4) Å

  • b = 10.0990 (2) Å

  • c = 10.9770 (3) Å

  • β = 112.2540 (12)°

  • V = 1396.99 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.57 mm−1

  • T = 120 (2) K

  • 0.40 × 0.30 × 0.22 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: Gaussian (Coppens et al., 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Tmin = 0.137, Tmax = 0.271

  • 9698 measured reflections

  • 1602 independent reflections

  • 1560 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.063

  • S = 1.14

  • 1602 reflections

  • 76 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −1.07 e Å−3

Table 1
Selected geometric parameters (Å°, )

Zr1—Cg1 2.199 (1) C6—Si1—C6i 116.0 (1)
Zr1—Br1 2.6007 (4) C1—Si1—C1i 93.2 (1)
Cg1—Zr1—Cg1i 125.96 (5) Br1—Zr1—Br1i 98.39 (1)
Symmetry code: (i) [-x, y, <sup arrange={\script{1\over 2}}-z]" class="img_align_bottom" style="max-width: 100%; height: auto; width: 250px;" />. Cg1 is the centroid of atoms C1–C5.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwin­owski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Metallocene complexes of Group 4 are intensively investigated as very efficient and selective olefin polymerization and co-polymerization catalysts (Borrelli et al., 2002). The most used strategy for the modification of catalytic properties of these metallocenes is the substitution at the cyclopentadienyl rings. Incorporation of an interannular bridge connecting both cyclopentadienyl rings in the molecule of metallocene leads to a broad class of complexes known as ansa-metallocenes. As part of an investigation of the influence of ring substitution on the properties of cyclopentadienyl complexes, the title compound, (I), was prepared, spectroscopically characterized and its structure determined

A perspective view of molecular structure of (I) is shown in Figure 1 with appropriate atom labeling scheme, selected bond distances and angles are summarized in Table 1. In the molecule of (I) the Zr atom is pseudotetrahedrally coordinated by two η5-bonded Cp rings and two Br atoms with geometry constrained by crystallographic twofold rotation axis, which bisects Br1—Zr—Br1a angle and passes through the metal and Si atom. The molecular parameters are comparable to those reported for [ZrCl2(η5-C5H4)2SiMe2] (Bajgur et al., 1985). On the inspection of parameters associated with Cp rings, the deviation from the ideal η5-bonding fashion could be observed. The C3—C4 bond distance of 1.400 (6) Å is shorter than the remaining C—C bonds (average of 1.42 Å). Similarly Zr1—C3 and Zr1—C4 bonds are longer [2.556 (3) Å and 2.552 (4) Å, respectively] than remaining metal-carbon bonds (average of 2.475 Å). These facts indicate the presence of η3-allyl and η2-olefin bonding fashion of Cp ring rather than η5-cyclopentadienyl bonding pattern.

Related literature top

For related ansa-zirconocenes, see, for example: Bajgur et al. (1985), Borrelli et al. (2002).

Experimental top

Compound (I) was prepared by bromination of analogous chloride derivative using boron tribromide. To the starting complex [ZrCl2(η5-C5H4)2SiMe2] (0.2 g; 0.57 mol) in 20 ml of dichloromethane 0.04 ml (0.42 mmol) of BBr3 was added. The color of the reaction mixture immediatelly turned to green and it was stirred for additional 2 h at 293 K. The solvent was evaporated in vacuum, solid residue was washed with hexane (2x5 ml) and vacuum-dried. Sublimation of crude product at 10 -3 Pa and 475 K gave 0.105 g (42%) of (I). Crystals of (I) suitable for X-ray diffraction measurements were grown during slow evaporation of chloroform solution at 273 K.

Refinement top

All H atoms were positioned geometrically and refined as riding on their parent C atoms, with C—H = 0.93 Å, Uiso(H) = 1.2Ue.g(C) and C—H = 0.96 Å, Uiso(H) = 1.5Ue.g(C) for cyclopentadienyl and methyl H atoms, respectively.

Computing details top

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Perspective view of (I), shown with 30% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (a) -x, y, 1/2-z.]
Dibromido[bis(η5-cyclopentadienyl)dimethylsilane]zirconium(IV) top
Crystal data top
[ZrBr2(C12H14Si)]F(000) = 840
Mr = 437.36Dx = 2.079 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6471 reflections
a = 13.6160 (4) Åθ = 1–27.5°
b = 10.0990 (2) ŵ = 6.57 mm1
c = 10.9770 (3) ÅT = 120 K
β = 112.2540 (12)°Prism, yellow
V = 1396.99 (6) Å30.4 × 0.3 × 0.22 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
1602 independent reflections
Radiation source: fine-focus sealed tube1560 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.6°
ϕ and ω scans to fill the Ewald sphereh = 1717
Absorption correction: gaussian
(Coppens et al., 1970)
k = 1313
Tmin = 0.137, Tmax = 0.271l = 1414
9698 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0323P)2 + 3.2435P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
1602 reflectionsΔρmax = 0.69 e Å3
76 parametersΔρmin = 1.07 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0044 (3)
Crystal data top
[ZrBr2(C12H14Si)]V = 1396.99 (6) Å3
Mr = 437.36Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.6160 (4) ŵ = 6.57 mm1
b = 10.0990 (2) ÅT = 120 K
c = 10.9770 (3) Å0.4 × 0.3 × 0.22 mm
β = 112.2540 (12)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1602 independent reflections
Absorption correction: gaussian
(Coppens et al., 1970)
1560 reflections with I > 2σ(I)
Tmin = 0.137, Tmax = 0.271Rint = 0.047
9698 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.14Δρmax = 0.69 e Å3
1602 reflectionsΔρmin = 1.07 e Å3
76 parameters
Special details top

Experimental. Spectroscopic analysis: 1H NMR (CDCl3, δ, p.p.m.): 7.15 (m, 4H), 5.97 (m, 4H), 0.73 (s, 6H). 13C NMR (CDCl3, δ, p.p.m.): -5.2, 1, 114.3, 115.8, 128.9. IR (KBr disc, cm-1): 3115 (m), 3099 (m), 3074 (m), 2964 (m), 2958 (m), 1448 (m), 1409 (w), 1400 (s), 1370 (s), 1362 (m), 1324 (m), 1314 (w), 1260 (s), 1200 (w), 1179 (s), 1168 (s), 1069 (s), 1048 (s), 1020 (s), 942 (m), 902 (s), 870 (s), 870 (s), 813 (s), 680 (s), 633 (s), 555 (m), 502 (m), 454 (s), 420 (s), 384 (m), 347 (s); UV-Vis (CH2Cl2, maxima at nm): 470, 377, 313, 233. Elemental analysis, calculated for C12H14Br2SiZr: C 32.96, H 3.23; found: C 32.61, H 3.14%.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.00000.31648 (3)0.25000.01164 (12)
Br10.155827 (19)0.48477 (3)0.33572 (2)0.02090 (12)
Si10.00000.01625 (9)0.25000.0160 (2)
C10.0077 (2)0.1116 (2)0.1295 (2)0.0170 (5)
C20.0792 (2)0.1870 (3)0.0443 (3)0.0206 (5)
H20.15040.16470.01930.025*
C30.0400 (3)0.3017 (3)0.0033 (3)0.0250 (6)
H30.08070.36580.05470.030*
C40.0707 (3)0.3014 (3)0.0658 (3)0.0247 (6)
H40.11660.36540.05670.030*
C50.1003 (2)0.1861 (3)0.1454 (3)0.0207 (5)
H50.16930.16300.19930.025*
C60.1245 (2)0.1135 (3)0.3168 (3)0.0247 (6)
H6A0.11910.17750.37870.037*
H6B0.18300.05510.36030.037*
H6C0.13590.15830.24620.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.01466 (17)0.01152 (18)0.01051 (17)0.0000.00678 (12)0.000
Br10.01687 (16)0.02362 (18)0.02273 (17)0.00544 (9)0.00811 (11)0.00413 (9)
Si10.0237 (5)0.0120 (4)0.0156 (5)0.0000.0112 (4)0.000
C10.0261 (12)0.0145 (11)0.0147 (11)0.0005 (10)0.0125 (9)0.0021 (9)
C20.0282 (13)0.0187 (13)0.0134 (11)0.0003 (10)0.0062 (10)0.0028 (9)
C30.0467 (17)0.0181 (13)0.0122 (11)0.0029 (12)0.0134 (11)0.0003 (10)
C40.0435 (16)0.0189 (13)0.0224 (13)0.0035 (12)0.0245 (12)0.0017 (10)
C50.0272 (13)0.0193 (13)0.0227 (13)0.0015 (10)0.0176 (11)0.0012 (10)
C60.0321 (14)0.0228 (14)0.0220 (13)0.0080 (12)0.0135 (11)0.0048 (11)
Geometric parameters (Å, º) top
Zr1—C5i2.471 (3)Si1—C1i1.880 (3)
Zr1—C52.471 (3)Si1—C11.880 (3)
Zr1—C2i2.476 (3)C1—C21.420 (4)
Zr1—C22.476 (3)C1—C51.422 (4)
Zr1—C12.480 (2)C2—C31.418 (4)
Zr1—C1i2.480 (2)C2—H20.9300
Zr1—C4i2.552 (3)C3—C41.400 (4)
Zr1—C42.552 (3)C3—H30.9300
Zr1—C32.556 (3)C4—C51.420 (4)
Zr1—C3i2.556 (3)C4—H40.9300
Zr1—Br1i2.6007 (3)C5—H50.9300
Zr1—Br12.6007 (3)C6—H6A0.9600
Si1—C6i1.853 (3)C6—H6B0.9600
Si1—C61.853 (3)C6—H6C0.9600
C5i—Zr1—C5115.60 (12)C3i—Zr1—Br1i103.82 (7)
C5i—Zr1—C2i54.64 (9)C5i—Zr1—Br1134.35 (7)
C5—Zr1—C2i90.90 (9)C5—Zr1—Br189.86 (6)
C5i—Zr1—C290.90 (9)C2i—Zr1—Br190.07 (6)
C5—Zr1—C254.64 (9)C2—Zr1—Br1133.57 (7)
C2i—Zr1—C2116.22 (12)C1—Zr1—Br1123.01 (6)
C5i—Zr1—C186.89 (8)C1i—Zr1—Br1123.08 (6)
C5—Zr1—C133.37 (8)C4i—Zr1—Br1104.65 (7)
C2i—Zr1—C187.36 (9)C4—Zr1—Br179.92 (7)
C2—Zr1—C133.31 (9)C3—Zr1—Br1103.82 (7)
C5i—Zr1—C1i33.37 (8)C3i—Zr1—Br180.64 (7)
C5—Zr1—C1i86.89 (8)Br1i—Zr1—Br198.387 (17)
C2i—Zr1—C1i33.31 (9)C6i—Si1—C6116.0 (2)
C2—Zr1—C1i87.36 (9)C6i—Si1—C1i110.88 (12)
C1—Zr1—C1i66.87 (11)C6—Si1—C1i111.83 (12)
C5i—Zr1—C4i32.79 (9)C6i—Si1—C1111.83 (12)
C5—Zr1—C4i141.00 (9)C6—Si1—C1110.87 (12)
C2i—Zr1—C4i53.88 (9)C1i—Si1—C193.26 (15)
C2—Zr1—C4i121.77 (9)C2—C1—C5106.1 (2)
C1—Zr1—C4i118.55 (9)C2—C1—Si1125.24 (19)
C1i—Zr1—C4i54.73 (8)C5—C1—Si1124.1 (2)
C5i—Zr1—C4141.00 (9)C2—C1—Zr173.19 (14)
C5—Zr1—C432.80 (9)C5—C1—Zr172.99 (14)
C2i—Zr1—C4121.77 (9)Si1—C1—Zr199.94 (10)
C2—Zr1—C453.88 (9)C3—C2—C1109.1 (2)
C1—Zr1—C454.73 (8)C3—C2—Zr176.77 (15)
C1i—Zr1—C4118.55 (9)C1—C2—Zr173.51 (14)
C4i—Zr1—C4173.17 (13)C3—C2—H2125.5
C5i—Zr1—C3121.83 (10)C1—C2—H2125.5
C5—Zr1—C353.87 (9)Zr1—C2—H2116.2
C2i—Zr1—C3141.26 (9)C4—C3—C2107.9 (2)
C2—Zr1—C332.69 (9)C4—C3—Zr173.94 (15)
C1—Zr1—C354.63 (8)C2—C3—Zr170.54 (15)
C1i—Zr1—C3118.78 (9)C4—C3—H3126.0
C4i—Zr1—C3147.45 (10)C2—C3—H3126.0
C4—Zr1—C331.81 (10)Zr1—C3—H3121.2
C5i—Zr1—C3i53.87 (9)C3—C4—C5107.8 (2)
C5—Zr1—C3i121.83 (10)C3—C4—Zr174.25 (15)
C2i—Zr1—C3i32.69 (9)C5—C4—Zr170.48 (14)
C2—Zr1—C3i141.25 (9)C3—C4—H4126.1
C1—Zr1—C3i118.78 (9)C5—C4—H4126.1
C1i—Zr1—C3i54.63 (8)Zr1—C4—H4120.9
C4i—Zr1—C3i31.81 (10)C4—C5—C1109.0 (2)
C4—Zr1—C3i147.45 (10)C4—C5—Zr176.72 (15)
C3—Zr1—C3i173.31 (13)C1—C5—Zr173.64 (14)
C5i—Zr1—Br1i89.86 (6)C4—C5—H5125.5
C5—Zr1—Br1i134.35 (7)C1—C5—H5125.5
C2i—Zr1—Br1i133.57 (7)Zr1—C5—H5116.1
C2—Zr1—Br1i90.07 (6)Si1—C6—H6A109.5
C1—Zr1—Br1i123.08 (6)Si1—C6—H6B109.5
C1i—Zr1—Br1i123.01 (6)H6A—C6—H6B109.5
C4i—Zr1—Br1i79.92 (7)Si1—C6—H6C109.5
C4—Zr1—Br1i104.65 (7)H6A—C6—H6C109.5
C3—Zr1—Br1i80.64 (7)H6B—C6—H6C109.5
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[ZrBr2(C12H14Si)]
Mr437.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)13.6160 (4), 10.0990 (2), 10.9770 (3)
β (°) 112.2540 (12)
V3)1396.99 (6)
Z4
Radiation typeMo Kα
µ (mm1)6.57
Crystal size (mm)0.4 × 0.3 × 0.22
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionGaussian
(Coppens et al., 1970)
Tmin, Tmax0.137, 0.271
No. of measured, independent and
observed [I > 2σ(I)] reflections
9698, 1602, 1560
Rint0.047
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.14
No. of reflections1602
No. of parameters76
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 1.07

Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, °) top
Zr1—Cg12.199 (1)C6—Si1—C6i116.0 (1)
Zr1—Br12.6007 (4)C1—Si1—C1i93.2 (1)
Cg1—Zr1—Cg1i125.96 (5)Br1—Zr1—Br1i98.39 (1)
Symmetry code: (i) -x, y, 1/2-z. Cg1 is the centroid of atoms C1–C5.
 

Acknowledgements

The authors thank the Ministry of Education, Youth and Sports of the Czech Republic for financial support of this work within the framework of research project MSM 0021627501.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBajgur, C. S., Tikkanen, W. R. & Petersen, J. L. (1985). Inorg. Chem. 24, 2539–2546.  CSD CrossRef CAS Web of Science Google Scholar
First citationBorrelli, M., Busico, V., Cipulo, R. & Ronca, S. (2002). Macromolecules, 35, 2835–2844.  Web of Science CrossRef CAS Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationHooft, R. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds