organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-1-Acetyl-5-benzyl-2-thioxoimidazolidin-4-one

aLaboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela, and bCentro de Química, Instituto Venezolano de Investigaciones, Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela
*Correspondence e-mail: gerzon@ula.ve

(Received 1 December 2008; accepted 9 December 2008; online 13 December 2008)

In the title compound, C12H12N2O2S, the mol­ecules have a wing-like conformation, with a distance of 3.797 (2) Å between the centroids of the five- and six-membered rings. In the crystal structure, mol­ecules are linked by N—H⋯O hydrogen bonds, forming infinite one-dimensional zigzag chains, running along [001], with a C(4) graph-set motif.

Related literature

For related compounds, see: Seijas et al. (2006[Seijas, L. E., Delgado, G. E., Mora, A. J., Bahsas, A. & Uzcátegui, J. (2006). Av. Quím. 1, 3-7.], 2007[Seijas, L. E., Delgado, G. E., Mora, A. J., Bahsas, A. & Briceño, A. (2007). Acta Cryst. C63, o303-o305.]); Delgado et al. (2007[Delgado, G. E., Mora, A. J., Uzcátegui, J., Bahsas, A. & Briceño, A. (2007). Acta Cryst. C63, o448-o450.]); Sulbaran et al. (2007[Sulbaran, M. E., Delgado, G. E., Mora, A. J., Bahsas, A., Novoa de Armas, H. & Blaton, N. (2007). Acta Cryst. C63, o543-o545.]). For racemization of amino acids, see: Yamada et al. (1983[Yamada, S., Hongo, C., Yoshioka, R. & Chibata, I. (1983). J. Org. Chem. 48, 843-846.]); Yoshioka (2007[Yoshioka, R. (2007). Top. Curr. Chem. 269, 83-132.]). For reference structural data, see: Allen et al. (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For hydrogen-bond motifs in graph-set notation, see Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2O2S

  • Mr = 248.30

  • Monoclinic, P 21 /c

  • a = 11.696 (5) Å

  • b = 13.479 (6) Å

  • c = 7.767 (4) Å

  • β = 94.41 (1)°

  • V = 1220.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 298 (2) K

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Rigaku AFC-7S Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.900, Tmax = 0.950

  • 12945 measured reflections

  • 2349 independent reflections

  • 2065 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.124

  • S = 1.05

  • 2349 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O4i 0.86 1.98 2.834 (2) 175
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

In continuation of our study of N-carbamoyl, hydantoin and thiohydantoin derivatives of α-amino acids (Seijas et al., 2006, 2007; Delgado et al., 2007; Sulbaran et al., 2007), we report here the structure of the title compound (I) - the N-acetylthiohydantoin derivative of the α-amino acid L-phenylalanine.

Compound (I) (Fig. 1) crystallizes in a centrosymmetric space group, which implies that L-phenylalanine suffered an amino acid racemization produced by the use of acetic acid in the synthesis (Yamada et al. 1983; Yoshioka, 2007). All bond distances and angles are normal (Allen, 2002). The thiohydantoin ring is essentially planar with a maximum deviations of 0.023 (1) Å in C4 and -0.025 (2) Å in C5. The molecular structure and crystal packing of (I) are stabilized by intermolecular N3—H3···O4 (x, 1/2 - y, 1/2 + z) hydrogen bonds (Table 1), forming infinite one-dimentional zigzag chains that run along [001] direction, which can be described in graph-set notation as C(4) (Etter, 1990) (Figure 2).

Related literature top

For related compounds, see: Seijas et al. (2006, 2007); Delgado et al. (2007); Sulbaran et al. (2007). For amino acids racemization, see: Yamada et al. (1983); Yoshioka (2007). For reference structural data, see: Allen et al. (2002); For hydrogen-bond motifs in graph-set notation, see Etter (1990).

Experimental top

L-phenylalanine (3.4 mmol) and NH4SCN (3.4 mmol) was dissolved in a 9 ml acetic anhydride - 1 ml acetic acid mixture and transferred in a round-bottom flask. The mixture was warmed, with agitation, to 363 K over a period of 30 min. The resulting solution was cooled in a ice/water mixture and stored in a freezer overnight. The resulting white solid was filtered off and washed with cool water (m.p. 441–443 K). Crystal of (I) suitable for X-ray diffraction analysis were obtained by slow evaporation of a 1:1 ethanol-methanol solution.

Refinement top

All H atoms were placed at calculated positions and treated using the riding model, with C—H distances of 0.93–0.98 A, and N—H distances of 0.86 A. The Uiso(H) parameters were fixed at 1.2Ueq(C, N) and 1.5Ueq(methyl).

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: PLATON (Spek, 2003) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atomic numbering scheme. Displacement elipsoids are drawn at the 25% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. A portion of the crystal packing viewed along the a-axis. Hydrogen bonds are marked with dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
rac-1-Acetyl-5-benzyl-2-thioxoimidazolidin-4-one top
Crystal data top
C12H12N2O2SF(000) = 520
Mr = 248.30Dx = 1.351 Mg m3
Monoclinic, P21/cMelting point = 441–443 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71070 Å
a = 11.696 (5) ÅCell parameters from 4020 reflections
b = 13.479 (6) Åθ = 2.4–27.8°
c = 7.767 (4) ŵ = 0.26 mm1
β = 94.41 (1)°T = 298 K
V = 1220.8 (9) Å3Block, colourless
Z = 40.4 × 0.3 × 0.2 mm
Data collection top
Rigaku AFC-7S Mercury
diffractometer
2349 independent reflections
Radiation source: Normal-focus sealed tube2065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 14.6306 pixels mm-1θmax = 28.0°, θmin = 2.3°
ω scansh = 1313
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1515
Tmin = 0.900, Tmax = 0.950l = 96
12945 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.4929P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2349 reflectionsΔρmax = 0.24 e Å3
156 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (2)
Crystal data top
C12H12N2O2SV = 1220.8 (9) Å3
Mr = 248.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.696 (5) ŵ = 0.26 mm1
b = 13.479 (6) ÅT = 298 K
c = 7.767 (4) Å0.4 × 0.3 × 0.2 mm
β = 94.41 (1)°
Data collection top
Rigaku AFC-7S Mercury
diffractometer
2349 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2065 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.950Rint = 0.026
12945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
2349 reflectionsΔρmin = 0.27 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.84958 (5)0.53330 (4)0.61947 (7)0.0501 (2)
O20.88296 (18)0.61004 (12)0.0516 (2)0.0689 (5)
O40.87718 (14)0.24785 (10)0.23095 (18)0.0512 (4)
N10.85248 (14)0.50588 (12)0.26762 (19)0.0366 (4)
N30.86134 (14)0.37142 (11)0.42952 (19)0.0383 (4)
H30.86220.33430.51960.046*
C20.85359 (16)0.47307 (13)0.4365 (2)0.0356 (4)
C40.86755 (17)0.33477 (14)0.2669 (2)0.0378 (4)
C50.85594 (17)0.42208 (14)0.1459 (2)0.0385 (4)
H50.92370.42720.07960.046*
C60.86200 (19)0.60326 (15)0.2013 (3)0.0476 (5)
C70.8434 (2)0.69011 (16)0.3128 (3)0.0626 (7)
H7A0.84210.74950.24450.094*
H7B0.90460.69410.40240.094*
H7C0.77160.68290.36370.094*
C80.74690 (19)0.41292 (17)0.0231 (3)0.0487 (5)
H8A0.73750.47320.04460.058*
H8B0.75650.35850.05610.058*
C90.63988 (19)0.39550 (17)0.1147 (3)0.0496 (5)
C100.5823 (2)0.4733 (2)0.1867 (3)0.0634 (7)
H100.61010.53760.17860.076*
C110.4837 (3)0.4563 (3)0.2707 (4)0.0837 (10)
H110.44630.50920.31900.100*
C120.4967 (3)0.2862 (3)0.2141 (7)0.1180 (15)
H120.46810.22230.22370.142*
C130.4415 (3)0.3629 (4)0.2826 (5)0.1022 (12)
H130.37490.35180.33780.123*
C140.5954 (3)0.3015 (2)0.1296 (5)0.0825 (9)
H140.63190.24780.08260.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0680 (4)0.0440 (4)0.0399 (3)0.0022 (2)0.0150 (2)0.0088 (2)
O20.1084 (15)0.0490 (10)0.0522 (10)0.0001 (9)0.0243 (9)0.0161 (7)
O40.0777 (11)0.0330 (8)0.0435 (8)0.0035 (7)0.0093 (7)0.0038 (6)
N10.0462 (10)0.0304 (8)0.0341 (8)0.0014 (7)0.0091 (6)0.0021 (6)
N30.0531 (10)0.0312 (8)0.0312 (8)0.0013 (7)0.0075 (6)0.0022 (6)
C20.0369 (10)0.0348 (10)0.0358 (10)0.0015 (7)0.0081 (7)0.0009 (7)
C40.0439 (11)0.0342 (10)0.0356 (10)0.0009 (8)0.0067 (7)0.0014 (7)
C50.0491 (12)0.0344 (10)0.0335 (10)0.0021 (8)0.0118 (8)0.0006 (7)
C60.0571 (14)0.0352 (11)0.0516 (13)0.0004 (9)0.0110 (10)0.0083 (9)
C70.0881 (19)0.0330 (12)0.0679 (16)0.0020 (11)0.0140 (13)0.0055 (10)
C80.0588 (14)0.0552 (13)0.0319 (10)0.0042 (10)0.0029 (9)0.0021 (9)
C90.0471 (13)0.0623 (14)0.0385 (11)0.0045 (10)0.0029 (8)0.0030 (9)
C100.0547 (15)0.0767 (19)0.0582 (15)0.0128 (12)0.0001 (11)0.0111 (12)
C110.0587 (18)0.126 (3)0.0657 (18)0.0246 (18)0.0017 (13)0.0179 (18)
C120.070 (2)0.102 (3)0.186 (4)0.022 (2)0.034 (3)0.016 (3)
C130.060 (2)0.144 (4)0.106 (3)0.000 (2)0.0263 (18)0.009 (2)
C140.0598 (17)0.0713 (19)0.118 (3)0.0079 (14)0.0165 (16)0.0138 (17)
Geometric parameters (Å, º) top
S2—C21.6402 (19)C7—H7C0.9600
O2—C61.210 (3)C8—C91.505 (3)
O4—C41.212 (2)C8—H8A0.9700
N1—C21.384 (2)C8—H8B0.9700
N1—C61.418 (2)C9—C141.378 (4)
N1—C51.476 (2)C9—C101.387 (3)
N3—C41.363 (2)C10—C111.387 (4)
N3—C21.374 (2)C10—H100.9300
N3—H30.8600C11—C131.358 (5)
C4—C51.506 (3)C11—H110.9300
C5—C81.537 (3)C12—C131.349 (5)
C5—H50.9800C12—C141.386 (5)
C6—C71.482 (3)C12—H120.9300
C7—H7A0.9600C13—H130.9300
C7—H7B0.9600C14—H140.9300
C2—N1—C6130.19 (17)H7B—C7—H7C109.5
C2—N1—C5111.36 (15)C9—C8—C5113.59 (16)
C6—N1—C5117.97 (16)C9—C8—H8A108.8
C4—N3—C2113.97 (15)C5—C8—H8A108.8
C4—N3—H3123.0C9—C8—H8B108.8
C2—N3—H3123.0C5—C8—H8B108.8
N3—C2—N1106.08 (15)H8A—C8—H8B107.7
N3—C2—S2122.29 (14)C14—C9—C10117.5 (2)
N1—C2—S2131.63 (15)C14—C9—C8121.1 (2)
O4—C4—N3125.20 (18)C10—C9—C8121.3 (2)
O4—C4—C5128.11 (17)C9—C10—C11120.9 (3)
N3—C4—C5106.65 (16)C9—C10—H10119.6
N1—C5—C4101.76 (14)C11—C10—H10119.6
N1—C5—C8113.36 (16)C13—C11—C10120.3 (3)
C4—C5—C8110.80 (17)C13—C11—H11119.9
N1—C5—H5110.2C10—C11—H11119.9
C4—C5—H5110.2C13—C12—C14120.9 (4)
C8—C5—H5110.2C13—C12—H12119.5
O2—C6—N1116.53 (19)C14—C12—H12119.5
O2—C6—C7123.47 (19)C12—C13—C11119.8 (3)
N1—C6—C7119.98 (18)C12—C13—H13120.1
C6—C7—H7A109.5C11—C13—H13120.1
C6—C7—H7B109.5C12—C14—C9120.7 (3)
H7A—C7—H7B109.5C12—C14—H14119.7
C6—C7—H7C109.5C9—C14—H14119.7
H7A—C7—H7C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.861.982.834 (2)175
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H12N2O2S
Mr248.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.696 (5), 13.479 (6), 7.767 (4)
β (°) 94.41 (1)
V3)1220.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerRigaku AFC-7S Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.900, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
12945, 2349, 2065
Rint0.026
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 1.05
No. of reflections2349
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.27

Computer programs: CrystalClear (Rigaku, 2002), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), PLATON (Spek, 2003) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.861.982.834 (2)175.4
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by Consejo de Desarrollo Científico, Humanístico y Tecnológico de la Universidad de Los Andes, CDCHT-ULA (grants C-1616–08-A and C-1617–08-F) and Fondo Nacional de Ciencia, Tecnología e Innovación, FONACIT (grant LAB-97000821).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDelgado, G. E., Mora, A. J., Uzcátegui, J., Bahsas, A. & Briceño, A. (2007). Acta Cryst. C63, o448–o450.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationJacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSeijas, L. E., Delgado, G. E., Mora, A. J., Bahsas, A. & Briceño, A. (2007). Acta Cryst. C63, o303–o305.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeijas, L. E., Delgado, G. E., Mora, A. J., Bahsas, A. & Uzcátegui, J. (2006). Av. Quím. 1, 3–7.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSulbaran, M. E., Delgado, G. E., Mora, A. J., Bahsas, A., Novoa de Armas, H. & Blaton, N. (2007). Acta Cryst. C63, o543–o545.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationYamada, S., Hongo, C., Yoshioka, R. & Chibata, I. (1983). J. Org. Chem. 48, 843–846.  CrossRef CAS Web of Science Google Scholar
First citationYoshioka, R. (2007). Top. Curr. Chem. 269, 83–132.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds