metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyridine)(2-formyl-6-meth­oxy­phenolato)nickel(II) perchlorate

aDepartment of Chemistry and Chemical Engineering, School of Bioengineering, Southwest JiaoTong University, Chengdu, Sichuan 610031, People's Republic of China, and bDepartment of Chemistry, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, People's Republic of China
*Correspondence e-mail: wcjsc2000@126.com

(Received 27 November 2008; accepted 1 December 2008; online 6 December 2008)

In the title compound, [Ni(C8H7O3)(C10H8N2)]ClO4, the NiII atom is in a slightly distorted square-planar coordination by two N atoms from the 2,2′-bipyridine (bipy) ligand and two O atoms from the deprotonated 2-formyl-6-methoxy­phenolate (mbd) ligand. The bipy ligand is nearly coplanar with the NiII square plane, the Ni atom being only 0.042 (2) Å from the mean plane, whereas the benzaldehyde plane is folded with respect to the square plane, making a dihedral angle of 19.17 (8)°. One of the O atoms of the perchlorate anion is involved in a weak inter­action with the Ni atom, with an Ni—O distance of 2.5732 (18) Å. The packing is stabilized by weak C—H⋯O inter­actions.

Related literature

For general background, see: Alizadeh et al. (1999[Alizadeh, N., Ershad, S., Naeimi, H., Sharghi, H. & Shamsipur, M. (1999). Pol. J. Chem. 73, 915-925.]); Hamblin et al. (2002[Hamblin, J., Childs, L. J., Alcock, N. W. & Hannon, M. J. (2002). J. Chem. Soc. Dalton Trans. pp. 164-169.]); Minuti et al. (1999[Minuti, L., Taticchi, A., Marrocchi, A., Gacs-Baitz, E. & Galeazzi, R. (1999). Eur. J. Org. Chem. pp. 3155-3163.]). For a related structure, see: Liu et al. (2008[Liu, W. L., Ye, L. F., Liu, X. F., Yuan, L. M., Jiang, J. X. & Yan, C. G. (2008). CrystEngComm, 10, 1395-1403.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H7O3)(C10H8N2)]ClO4

  • Mr = 465.48

  • Triclinic, [P \overline 1]

  • a = 8.460 (1) Å

  • b = 9.580 (1) Å

  • c = 11.956 (2) Å

  • α = 84.45 (1)°

  • β = 80.05 (1)°

  • γ = 80.25 (1)°

  • V = 938.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 298 (2) K

  • 0.32 × 0.26 × 0.19 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.696, Tmax = 0.801

  • 3644 measured reflections

  • 3381 independent reflections

  • 2838 reflections with I > 2σ(I)

  • Rint = 0.009

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.077

  • S = 1.04

  • 3381 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O7i 0.93 2.58 3.461 (4) 159
C12—H12⋯O5ii 0.93 2.57 3.499 (3) 177
C15—H15⋯O5ii 0.93 2.59 3.517 (3) 171
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2,2'-Bipyridyl ligand is bidentate chelating ligand, which can commonly act as terminal ligands, and may also provide molecular interaction sites for molecular recognition or assembly (Minuti et al., 1999; Hamblin et al., 2002). On the other hand, aldehyde ligands have significant importance in chemistry, specially in the development of its complexes, because this type ligands are potentially capable of forming stable complexes with metal ions (Alizadeh et al., 1999). Herein we report the synthesis and characterization of the title complex with mixed co-ligand.

The NiII atom in the title complex, has a square coordination formed by two N atoms from Bipy ligand and two O atoms from protonated mbd ligand (Fig. 1). One of the O atom of the perchlorate anion is in weak interaction with the Ni atom with a Ni—O distance of 2.5732 (18) Å. The average Ni—N bond length of 1.98 Å is close to the values observed in related complexes (Liu et al., 2008). The occurrence of C—H···O hydrogen bonding stabilizes the packing (Table 1).

Related literature top

For general background, see: Alizadeh et al. (1999); Hamblin et al. (2002); Minuti et al. (1999). For a related structure, see: Liu et al. (2008).

Experimental top

Bipy (0.023 g, 0.12 mmol), Ni(ClO4)2 (0.028 g, 0.13 mmol) and Hmbd (0.020 g, 0.16 mmol), were added in a solvent of ethanol, the mixture was stirring were required. The resultant solution was kept at room temperature for three weeks yielding green crystals of (I)

Refinement top

All H atoms attached were fixed geometrically and treated as riding on their parent C atoms with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(aromatic) or Uiso(H) = 1.5Ueq(methyl).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of compound (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
(2,2'-Bipyridine)(2-formyl-6-methoxyphenolato)nickel(II) perchlorate top
Crystal data top
[Ni(C8H7O3)(C10H8N2)]ClO4Z = 2
Mr = 465.48F(000) = 476
Triclinic, P1Dx = 1.647 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.460 (1) ÅCell parameters from 3381 reflections
b = 9.580 (1) Åθ = 1.7–25.2°
c = 11.956 (2) ŵ = 1.22 mm1
α = 84.45 (1)°T = 298 K
β = 80.05 (1)°Block, green
γ = 80.25 (1)°0.32 × 0.26 × 0.19 mm
V = 938.4 (2) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
3381 independent reflections
Radiation source: fine-focus sealed tube2838 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.009
ϕ and ω scansθmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 010
Tmin = 0.696, Tmax = 0.801k = 1111
3644 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.049P)2]
where P = (Fo2 + 2Fc2)/3
3381 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Ni(C8H7O3)(C10H8N2)]ClO4γ = 80.25 (1)°
Mr = 465.48V = 938.4 (2) Å3
Triclinic, P1Z = 2
a = 8.460 (1) ÅMo Kα radiation
b = 9.580 (1) ŵ = 1.22 mm1
c = 11.956 (2) ÅT = 298 K
α = 84.45 (1)°0.32 × 0.26 × 0.19 mm
β = 80.05 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3381 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2838 reflections with I > 2σ(I)
Tmin = 0.696, Tmax = 0.801Rint = 0.009
3644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
3381 reflectionsΔρmin = 0.50 e Å3
263 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.62596 (3)0.46273 (3)0.37323 (2)0.03207 (11)
O10.8230 (2)0.46228 (19)0.43851 (14)0.0491 (4)
O20.54224 (18)0.33979 (16)0.49436 (13)0.0397 (4)
O30.4083 (2)0.12543 (17)0.59302 (15)0.0531 (5)
N10.4407 (2)0.45896 (19)0.29274 (15)0.0356 (4)
N20.6801 (2)0.6028 (2)0.24547 (15)0.0384 (4)
C10.8713 (3)0.3669 (3)0.5099 (2)0.0539 (7)
H10.97500.36770.52580.065*
C20.7895 (3)0.2585 (3)0.5693 (2)0.0490 (6)
C30.8710 (4)0.1578 (3)0.6437 (3)0.0797 (10)
H30.97600.16540.65300.096*
C40.7985 (5)0.0514 (3)0.7010 (3)0.0935 (13)
H40.85320.01310.74990.112*
C50.6424 (4)0.0376 (3)0.6871 (2)0.0711 (9)
H50.59400.03670.72670.085*
C60.5578 (3)0.1319 (2)0.6157 (2)0.0462 (6)
C70.6294 (3)0.2479 (2)0.55657 (18)0.0390 (5)
C80.3359 (4)0.0033 (3)0.6415 (2)0.0662 (8)
H8A0.41190.08140.62510.099*
H8B0.23990.00150.60940.099*
H8C0.30750.00840.72250.099*
C90.3265 (3)0.3750 (3)0.3212 (2)0.0416 (5)
H90.32780.31480.38700.050*
C100.2074 (3)0.3751 (3)0.2563 (2)0.0503 (6)
H100.13000.31510.27740.060*
C110.2044 (3)0.4647 (3)0.1599 (2)0.0544 (7)
H110.12390.46680.11540.065*
C120.3211 (3)0.5518 (3)0.1291 (2)0.0512 (6)
H120.32080.61290.06370.061*
C130.4388 (3)0.5464 (2)0.19728 (18)0.0380 (5)
C140.5734 (3)0.6303 (2)0.17170 (18)0.0393 (5)
C150.5939 (4)0.7291 (3)0.0798 (2)0.0557 (7)
H150.51810.74930.03040.067*
C160.7279 (4)0.7967 (3)0.0627 (2)0.0634 (8)
H160.74350.86290.00110.076*
C170.8374 (4)0.7669 (3)0.1357 (2)0.0594 (7)
H170.92910.81130.12440.071*
C180.8102 (3)0.6699 (3)0.2267 (2)0.0484 (6)
H180.88480.65000.27700.058*
Cl0.82646 (7)0.24175 (6)0.14548 (5)0.04118 (15)
O40.8132 (2)0.2621 (2)0.26486 (14)0.0597 (5)
O50.6696 (2)0.2285 (2)0.12270 (17)0.0753 (6)
O60.8814 (3)0.3620 (2)0.07874 (16)0.0652 (5)
O70.9370 (3)0.1160 (2)0.11921 (17)0.0757 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03248 (17)0.03601 (17)0.03033 (16)0.01101 (12)0.01119 (11)0.00581 (11)
O10.0452 (10)0.0571 (11)0.0506 (10)0.0154 (8)0.0172 (8)0.0019 (9)
O20.0396 (9)0.0392 (9)0.0400 (9)0.0051 (7)0.0130 (7)0.0092 (7)
O30.0633 (12)0.0395 (10)0.0524 (10)0.0135 (9)0.0016 (9)0.0073 (8)
N10.0376 (10)0.0365 (10)0.0333 (9)0.0057 (8)0.0090 (8)0.0003 (8)
N20.0423 (11)0.0382 (11)0.0351 (10)0.0104 (9)0.0028 (8)0.0029 (8)
C10.0450 (15)0.0599 (17)0.0627 (17)0.0026 (13)0.0254 (13)0.0138 (14)
C20.0554 (16)0.0417 (14)0.0545 (15)0.0006 (12)0.0293 (13)0.0036 (12)
C30.087 (2)0.059 (2)0.104 (3)0.0030 (18)0.065 (2)0.0011 (19)
C40.133 (3)0.053 (2)0.109 (3)0.004 (2)0.084 (3)0.0223 (19)
C50.116 (3)0.0403 (16)0.0610 (18)0.0093 (17)0.0372 (18)0.0122 (13)
C60.0663 (17)0.0351 (13)0.0367 (12)0.0047 (12)0.0126 (12)0.0014 (10)
C70.0525 (14)0.0325 (12)0.0317 (11)0.0029 (11)0.0144 (10)0.0039 (9)
C80.090 (2)0.0397 (15)0.0617 (18)0.0221 (15)0.0168 (16)0.0003 (13)
C90.0405 (13)0.0436 (14)0.0427 (13)0.0110 (11)0.0101 (10)0.0012 (11)
C100.0427 (14)0.0594 (17)0.0530 (15)0.0150 (13)0.0107 (12)0.0059 (13)
C110.0469 (15)0.0707 (19)0.0503 (15)0.0073 (14)0.0226 (12)0.0046 (14)
C120.0531 (15)0.0616 (17)0.0414 (14)0.0082 (13)0.0201 (12)0.0045 (12)
C130.0421 (13)0.0389 (12)0.0320 (11)0.0016 (10)0.0085 (10)0.0009 (10)
C140.0454 (14)0.0381 (13)0.0330 (11)0.0040 (11)0.0050 (10)0.0019 (10)
C150.0692 (18)0.0561 (17)0.0394 (14)0.0127 (14)0.0074 (13)0.0109 (12)
C160.082 (2)0.0588 (18)0.0454 (15)0.0230 (16)0.0032 (15)0.0125 (13)
C170.0655 (19)0.0593 (18)0.0523 (16)0.0256 (15)0.0086 (14)0.0028 (14)
C180.0479 (14)0.0509 (15)0.0484 (14)0.0199 (12)0.0002 (11)0.0046 (12)
Cl0.0437 (3)0.0428 (3)0.0378 (3)0.0086 (3)0.0106 (2)0.0041 (2)
O40.0798 (13)0.0620 (12)0.0386 (9)0.0123 (10)0.0148 (9)0.0014 (9)
O50.0592 (12)0.1022 (17)0.0741 (14)0.0325 (12)0.0310 (10)0.0178 (12)
O60.0829 (14)0.0616 (12)0.0546 (11)0.0305 (11)0.0136 (10)0.0177 (9)
O70.0816 (15)0.0588 (13)0.0725 (14)0.0163 (11)0.0001 (11)0.0044 (11)
Geometric parameters (Å, º) top
Ni1—O21.8932 (15)C8—H8B0.9600
Ni1—O11.9580 (16)C8—H8C0.9600
Ni1—N21.9783 (19)C9—C101.374 (3)
Ni1—N11.9828 (18)C9—H90.9300
O1—C11.255 (3)C10—C111.370 (3)
O2—C71.310 (3)C10—H100.9300
O3—C61.351 (3)C11—C121.379 (4)
O3—C81.439 (3)C11—H110.9300
N1—C91.339 (3)C12—C131.384 (3)
N1—C131.349 (3)C12—H120.9300
N2—C181.343 (3)C13—C141.476 (3)
N2—C141.346 (3)C14—C151.386 (3)
C1—C21.412 (4)C15—C161.374 (4)
C1—H10.9300C15—H150.9300
C2—C71.410 (3)C16—C171.359 (4)
C2—C31.421 (4)C16—H160.9300
C3—C41.348 (5)C17—C181.374 (3)
C3—H30.9300C17—H170.9300
C4—C51.388 (5)C18—H180.9300
C4—H40.9300Cl—O71.4194 (19)
C5—C61.378 (4)Cl—O51.4284 (19)
C5—H50.9300Cl—O61.4336 (18)
C6—C71.425 (3)Cl—O41.4418 (17)
C8—H8A0.9600
O2—Ni1—O192.24 (7)O3—C8—H8C109.5
O2—Ni1—N2171.66 (7)H8A—C8—H8C109.5
O1—Ni1—N294.93 (7)H8B—C8—H8C109.5
O2—Ni1—N191.43 (7)N1—C9—C10122.1 (2)
O1—Ni1—N1174.35 (7)N1—C9—H9119.0
N2—Ni1—N181.75 (8)C10—C9—H9119.0
C1—O1—Ni1122.66 (17)C11—C10—C9119.0 (2)
C7—O2—Ni1125.39 (15)C11—C10—H10120.5
C6—O3—C8116.8 (2)C9—C10—H10120.5
C9—N1—C13119.0 (2)C10—C11—C12119.7 (2)
C9—N1—Ni1126.47 (15)C10—C11—H11120.1
C13—N1—Ni1114.47 (15)C12—C11—H11120.1
C18—N2—C14118.7 (2)C11—C12—C13118.7 (2)
C18—N2—Ni1126.43 (17)C11—C12—H12120.7
C14—N2—Ni1114.84 (15)C13—C12—H12120.7
O1—C1—C2128.7 (2)N1—C13—C12121.5 (2)
O1—C1—H1115.7N1—C13—C14114.52 (19)
C2—C1—H1115.7C12—C13—C14124.0 (2)
C7—C2—C1121.7 (2)N2—C14—C15121.0 (2)
C7—C2—C3119.4 (3)N2—C14—C13114.38 (19)
C1—C2—C3119.0 (3)C15—C14—C13124.6 (2)
C4—C3—C2121.0 (3)C16—C15—C14119.1 (3)
C4—C3—H3119.5C16—C15—H15120.4
C2—C3—H3119.5C14—C15—H15120.4
C3—C4—C5120.2 (3)C17—C16—C15119.9 (3)
C3—C4—H4119.9C17—C16—H16120.0
C5—C4—H4119.9C15—C16—H16120.0
C6—C5—C4121.3 (3)C16—C17—C18118.8 (3)
C6—C5—H5119.4C16—C17—H17120.6
C4—C5—H5119.4C18—C17—H17120.6
O3—C6—C5126.1 (3)N2—C18—C17122.4 (3)
O3—C6—C7114.1 (2)N2—C18—H18118.8
C5—C6—C7119.8 (3)C17—C18—H18118.8
O2—C7—C2123.6 (2)O7—Cl—O5109.87 (14)
O2—C7—C6118.2 (2)O7—Cl—O6110.45 (13)
C2—C7—C6118.3 (2)O5—Cl—O6109.20 (12)
O3—C8—H8A109.5O7—Cl—O4109.12 (12)
O3—C8—H8B109.5O5—Cl—O4108.41 (12)
H8A—C8—H8B109.5O6—Cl—O4109.75 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O7i0.932.583.461 (4)159
C12—H12···O5ii0.932.573.499 (3)177
C15—H15···O5ii0.932.593.517 (3)171
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C8H7O3)(C10H8N2)]ClO4
Mr465.48
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.460 (1), 9.580 (1), 11.956 (2)
α, β, γ (°)84.45 (1), 80.05 (1), 80.25 (1)
V3)938.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.32 × 0.26 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.696, 0.801
No. of measured, independent and
observed [I > 2σ(I)] reflections
3644, 3381, 2838
Rint0.009
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.04
No. of reflections3381
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.50

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O7i0.932.583.461 (4)159.1
C12—H12···O5ii0.932.573.499 (3)176.9
C15—H15···O5ii0.932.593.517 (3)171.2
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

The authors are grateful to the Young Teacher Underway Science Foundation of Southwest JiaoTong University for financial support.

References

First citationAlizadeh, N., Ershad, S., Naeimi, H., Sharghi, H. & Shamsipur, M. (1999). Pol. J. Chem. 73, 915–925.  CAS Google Scholar
First citationBruker (2004). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHamblin, J., Childs, L. J., Alcock, N. W. & Hannon, M. J. (2002). J. Chem. Soc. Dalton Trans. pp. 164–169.  Web of Science CSD CrossRef Google Scholar
First citationLiu, W. L., Ye, L. F., Liu, X. F., Yuan, L. M., Jiang, J. X. & Yan, C. G. (2008). CrystEngComm, 10, 1395–1403.  Web of Science CSD CrossRef CAS Google Scholar
First citationMinuti, L., Taticchi, A., Marrocchi, A., Gacs-Baitz, E. & Galeazzi, R. (1999). Eur. J. Org. Chem. pp. 3155–3163.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds