organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 6-amino-5-cyano-4-iso­propyl-2-methyl-4H-pyran-3-carboxyl­ate

aLaboratoire de Chimie Appliquée: Hétérocycles, Corps Gras et Polymères, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax, Tunisia, and bLaboratoire des Sciences de Materiaux et d'Environnement, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax, Tunisia
*Correspondence e-mail: bh_hamdi2006@yahoo.fr

(Received 29 November 2008; accepted 2 December 2008; online 6 December 2008)

In the title compound, C13H18N2O3, the two H atoms of the NH2 group are engaged in hydrogen bonding with the N atom of the cyano group and with one O atom of the ethoxy­carbonyl group, building a chain parallel to the [100] direction. The N—H⋯N hydrogen bonds assemble the mol­ecules around inversion centres, forming dimers with an R22(12) graph-set motif.

Related literature

For general background, see: Messaâd et al. (2005[Messaâd, M., Chabchoub, F. & Salem, M. (2005). Heterocycl. Commun. 11, 139-144.], 2006[Messaâd, M., Chabchoub, F. & Salem, M. (2006). Phosphorus Sulfur Silicon Relat. Elem., 181, 2529-2534.]); Mohr et al. (1975[Mohr, S. J., Chirigos, M. A., Fuhrman, F. S. & Pryor, J. W. (1975). Cancer Res. 35, 3750-3754.]); Ohira & Yatagai (1993[Ohira, T. & Yatagai, M. (1993). J. Jpn Wood Res. Soc. 39, 237-242.]); Tandon et al. (1991[Tandon, V. K., Vaish, M., Jain, S., Bhakuni, D. S. & Srinal, R. C. (1991). Indian J. Pharm. Sci. 53, 22-23.]); Wang et al. (1996[Wang, S., Milne, G. W., Yan, X., Posey, I. J., Nicklaus, M. C., Grahem, L. & Rice, W. G. (1996). J. Med. Chem. 39, 2047-2054.]); Zamocka et al. (1992[Zamocka, J., Misikova, E. & Durinda, J. (1992). Cesk Farm. 41, 170-172.]); Bloxham et al. (1994[Bloxham, J., Dell, C. P. & Smith, C. W. (1994). Heterocycles, 38, 399-408.]); Elagamey et al. (1993[Elagamey, A. G. A., El-Taweel, F. M., Khodeir, M. N. M. & Elnagdi, M. H. (1993). Bull. Chem. Soc. Jpn, 66, 464-468.]); Khafagy et al. (2002[Khafagy, M., Abd El-Wahab, A., Eid, F. & El-Agrody, A. (2002). Il Farmaco, 57, 715-722.]). For graph-set notation, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]); Bernstein et al. (1994[Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431-507. New York: VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18N2O3

  • Mr = 250.29

  • Triclinic, [P \overline 1]

  • a = 8.0856 (1) Å

  • b = 9.3193 (2) Å

  • c = 10.4563 (2) Å

  • α = 65.652 (1)°

  • β = 69.679 (1)°

  • γ = 76.105 (1)°

  • V = 668.80 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.44 × 0.36 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.982

  • 17876 measured reflections

  • 4664 independent reflections

  • 3324 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.143

  • S = 1.05

  • 4664 reflections

  • 167 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 2.08 2.9411 (11) 174
N2—H2B⋯N3ii 0.86 2.19 3.0269 (13) 164
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The analysis of the bibliographical data shows that pyrans are biologically interesting compounds (Bloxham et al., 1994; Wang et al., 1996). In fact, some pyran derivatives present antibacterial activities (Zamocka et al., 1992; Ohira & Yatagai, 1993); antifungal activities (Mohr et al., 1975); antitumor activity (Tandon et al., 1991) and they can have an hypotensive effect (Elagamey et al., 1993). 2-amino-3-cyano-4H-pyrans are useful biphilic agents that lead to polycondensed pyranopyrimidines (Khafagy et al., 2002; Messaâd et al., 2005, 2006). In this paper we report for the first time the synthesis of 2-amino-3-cyano-5-ethoxycarbonyl-4-isopropyl-6-methyl-4H-pyran (3). This product was prepared via a standard addition of Michael of ethylacetoacetate (1) on α,β-ethylenic nitrile (2) in the presence of pyridine as a base (Scheme).

A view of the molecule is represented in Fig. 1. The two H atoms of the NH2 group are engaged in hydrogen bondings with the nitrogen of the cyano group and with one O atom of the ethoxy group then building a chain developing parallel to the [100] direction (Table 1, Fig. 2). The N—H···N hydrogen bonds assemble the molecules around inversion centres to form pseudo-dimers with a R22(12) graph set motif (Etter, 1990; Bernstein et al., 1994).

Related literature top

For general background, see: Messaâd et al. (2005, 2006); Mohr et al. (1975); Ohira & Yatagai (1993); Tandon et al. (1991); Wang et al. (1996); Zamocka et al. (1992); Bloxham et al. (1994); Elagamey et al. (1993); Khafagy et al. (2002). For graph-set notation, see: Etter (1990); Bernstein et al. (1994).

Experimental top

A mixture containing 1.3 g (0.01 mol) of ethylacetoacetate and 1.2 g (0.01 mol) of α,β-ethylenic nitrile in 50 ml of ethanol was heated to reflux for 3 h. The solvent was removed under rotary evaporation. The crude product was washed with ether then filtered and recrystallized from ethanol to give analytically pure crystals. Yield 75%; m.p. 118°C. Spectroscopic analysis, IR: νCN: 2183 cm-1; νNH2: 3334–3398 cm-1; νCO:1692 cm-1; 1H NMR (300 MHz; CDCl3, p.p.m.): 1.29 (t, 3 J = 7.5, 3H); 4.21 (q, 3 J = 7.5, 2H); 2.29 (s, 1H); 4.48 (s, 2H); 3.37(d, 3 J = 4.5, 1H); 1.82 (m, 1H); 0.81–0.97 (2 d, 3 J = 9, 6H); 13 C NMR (75 MHz; CDCl3, p.p.m.): 14.16; 16.93; 18.27; 19.62; 34.58; 38.66; 57.20; 60.71; 108.42; 120.42; 157.64; 160.23; 166.62.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.98 Å (C methine), 0.97 Å (C methylene), 0.96 Å (C methyl) and 0.86 Å (NH) with Uiso(H) = 1.2 Ueq(C methine, C methylene and NH) and Uiso(H) = 1.5 Ueq(C methyl).

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with the atom-labelling scheme. Ellispsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the formation of pseudo dimer through N—H···O and O—H···O hydrogen bonds. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) 1 + x, y, z; (ii) 1 - x, -y, 1 - z]
[Figure 3] Fig. 3. The formation of the title compound.
Ethyl 6-amino-5-cyano-4-isopropyl-2-methyl-4H-pyran-3-carboxylate top
Crystal data top
C13H18N2O3Z = 2
Mr = 250.29F(000) = 268
Triclinic, P1Dx = 1.243 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0856 (1) ÅCell parameters from 2132 reflections
b = 9.3193 (2) Åθ = 2.3–21.2°
c = 10.4563 (2) ŵ = 0.09 mm1
α = 65.652 (1)°T = 296 K
β = 69.679 (1)°Prism, colourless
γ = 76.105 (1)°0.44 × 0.36 × 0.18 mm
V = 668.80 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4664 independent reflections
Radiation source: sealed tube3324 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 32.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1212
Tmin = 0.959, Tmax = 0.982k = 1312
17876 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0801P)2 + 0.026P]
where P = (Fo2 + 2Fc2)/3
4664 reflections(Δ/σ)max = 0.009
167 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H18N2O3γ = 76.105 (1)°
Mr = 250.29V = 668.80 (2) Å3
Triclinic, P1Z = 2
a = 8.0856 (1) ÅMo Kα radiation
b = 9.3193 (2) ŵ = 0.09 mm1
c = 10.4563 (2) ÅT = 296 K
α = 65.652 (1)°0.44 × 0.36 × 0.18 mm
β = 69.679 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4664 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3324 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.982Rint = 0.027
17876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
4664 reflectionsΔρmin = 0.24 e Å3
167 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36662 (8)0.54982 (7)0.29951 (8)0.03977 (18)
O20.23592 (10)0.56365 (10)0.34370 (11)0.0559 (2)
O30.12340 (9)0.79434 (9)0.22760 (9)0.0463 (2)
N20.54618 (11)0.33268 (10)0.37642 (11)0.0440 (2)
H2A0.61610.39720.36310.053*
H2B0.57730.23210.40800.053*
N30.29885 (15)0.00436 (11)0.48430 (13)0.0583 (3)
C10.38924 (12)0.38872 (11)0.34801 (10)0.0340 (2)
C20.26177 (12)0.30627 (10)0.36205 (10)0.0341 (2)
C30.10119 (11)0.39019 (10)0.30733 (10)0.03172 (19)
H30.00200.33800.38010.038*
C40.07103 (11)0.55961 (10)0.29910 (10)0.03243 (19)
C50.19954 (12)0.63057 (10)0.29517 (10)0.0344 (2)
C60.11029 (12)0.63756 (12)0.29492 (11)0.0364 (2)
C70.29880 (14)0.87305 (14)0.21657 (15)0.0535 (3)
H7A0.38190.85240.31330.064*
H7B0.34090.83420.16180.064*
C80.2844 (2)1.04593 (17)0.14025 (19)0.0738 (4)
H8A0.24951.08430.19820.111*
H8B0.39731.10070.12640.111*
H8C0.19721.06440.04690.111*
C90.28332 (13)0.13998 (11)0.42860 (12)0.0393 (2)
C100.19803 (15)0.79274 (12)0.28995 (14)0.0471 (3)
H10A0.07850.84390.30480.071*
H10B0.27000.85310.19630.071*
H10C0.24460.78590.36540.071*
C110.11157 (12)0.38374 (12)0.15880 (11)0.0382 (2)
H110.00710.44990.12970.046*
C120.27420 (17)0.45164 (17)0.03829 (13)0.0573 (3)
H12A0.37950.39030.06390.086*
H12B0.27280.55960.02660.086*
H12C0.27300.44790.05180.086*
C130.1026 (2)0.21704 (15)0.17254 (16)0.0614 (3)
H13A0.08520.22040.08500.092*
H13B0.00540.17280.25480.092*
H13C0.21160.15250.18650.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0361 (3)0.0241 (3)0.0613 (4)0.0051 (2)0.0227 (3)0.0092 (3)
O20.0355 (4)0.0475 (5)0.0925 (6)0.0084 (3)0.0162 (4)0.0320 (4)
O30.0353 (3)0.0343 (4)0.0665 (5)0.0028 (3)0.0207 (3)0.0140 (3)
N20.0393 (4)0.0292 (4)0.0672 (6)0.0028 (3)0.0279 (4)0.0109 (4)
N30.0649 (6)0.0298 (5)0.0844 (8)0.0039 (4)0.0399 (6)0.0098 (5)
C10.0358 (4)0.0255 (4)0.0421 (5)0.0041 (3)0.0164 (4)0.0088 (3)
C20.0378 (4)0.0246 (4)0.0437 (5)0.0043 (3)0.0185 (4)0.0100 (3)
C30.0322 (4)0.0248 (4)0.0417 (4)0.0057 (3)0.0146 (3)0.0106 (3)
C40.0320 (4)0.0264 (4)0.0424 (5)0.0030 (3)0.0143 (3)0.0128 (3)
C50.0357 (4)0.0258 (4)0.0450 (5)0.0038 (3)0.0171 (4)0.0111 (3)
C60.0334 (4)0.0343 (5)0.0481 (5)0.0018 (3)0.0138 (4)0.0204 (4)
C70.0398 (5)0.0505 (7)0.0749 (8)0.0106 (5)0.0261 (5)0.0276 (6)
C80.0675 (8)0.0544 (8)0.0838 (10)0.0189 (6)0.0321 (7)0.0150 (7)
C90.0413 (5)0.0289 (5)0.0525 (5)0.0034 (4)0.0224 (4)0.0120 (4)
C100.0509 (5)0.0294 (5)0.0710 (7)0.0048 (4)0.0277 (5)0.0188 (5)
C110.0393 (5)0.0369 (5)0.0472 (5)0.0021 (4)0.0200 (4)0.0183 (4)
C120.0578 (7)0.0678 (8)0.0461 (6)0.0139 (6)0.0110 (5)0.0195 (6)
C130.0818 (9)0.0518 (7)0.0718 (8)0.0148 (6)0.0272 (7)0.0343 (6)
Geometric parameters (Å, º) top
O1—C11.3599 (11)C7—C81.4871 (18)
O1—C51.3855 (11)C7—H7A0.9700
O2—C61.2053 (11)C7—H7B0.9700
O3—C61.3308 (12)C8—H8A0.9600
O3—C71.4516 (12)C8—H8B0.9600
N2—C11.3367 (11)C8—H8C0.9600
N2—H2A0.8600C10—H10A0.9600
N2—H2B0.8600C10—H10B0.9600
N3—C91.1489 (13)C10—H10C0.9600
C1—C21.3625 (12)C11—C131.5172 (15)
C2—C91.4077 (13)C11—C121.5194 (15)
C2—C31.5113 (12)C11—H110.9800
C3—C41.5091 (12)C12—H12A0.9600
C3—C111.5513 (13)C12—H12B0.9600
C3—H30.9800C12—H12C0.9600
C4—C51.3404 (11)C13—H13A0.9600
C4—C61.4785 (12)C13—H13B0.9600
C5—C101.4868 (13)C13—H13C0.9600
C1—O1—C5119.76 (7)C7—C8—H8A109.5
C6—O3—C7116.29 (8)C7—C8—H8B109.5
C1—N2—H2A120.0H8A—C8—H8B109.5
C1—N2—H2B120.0C7—C8—H8C109.5
H2A—N2—H2B120.0H8A—C8—H8C109.5
N2—C1—O1110.47 (7)H8B—C8—H8C109.5
N2—C1—C2128.56 (8)N3—C9—C2179.11 (13)
O1—C1—C2120.97 (8)C5—C10—H10A109.5
C1—C2—C9118.33 (8)C5—C10—H10B109.5
C1—C2—C3121.20 (8)H10A—C10—H10B109.5
C9—C2—C3120.47 (7)C5—C10—H10C109.5
C4—C3—C2109.19 (7)H10A—C10—H10C109.5
C4—C3—C11110.66 (7)H10B—C10—H10C109.5
C2—C3—C11114.29 (8)C13—C11—C12110.81 (10)
C4—C3—H3107.5C13—C11—C3111.65 (9)
C2—C3—H3107.5C12—C11—C3112.53 (8)
C11—C3—H3107.5C13—C11—H11107.2
C5—C4—C6124.13 (8)C12—C11—H11107.2
C5—C4—C3121.99 (8)C3—C11—H11107.2
C6—C4—C3113.88 (7)C11—C12—H12A109.5
C4—C5—O1120.88 (8)C11—C12—H12B109.5
C4—C5—C10130.87 (9)H12A—C12—H12B109.5
O1—C5—C10108.23 (7)C11—C12—H12C109.5
O2—C6—O3122.42 (8)H12A—C12—H12C109.5
O2—C6—C4122.32 (9)H12B—C12—H12C109.5
O3—C6—C4115.19 (7)C11—C13—H13A109.5
O3—C7—C8107.55 (10)C11—C13—H13B109.5
O3—C7—H7A110.2H13A—C13—H13B109.5
C8—C7—H7A110.2C11—C13—H13C109.5
O3—C7—H7B110.2H13A—C13—H13C109.5
C8—C7—H7B110.2H13B—C13—H13C109.5
H7A—C7—H7B108.5
C5—O1—C1—N2165.46 (8)C6—C4—C5—C101.72 (18)
C5—O1—C1—C214.55 (14)C3—C4—C5—C10178.70 (10)
N2—C1—C2—C97.28 (17)C1—O1—C5—C418.29 (14)
O1—C1—C2—C9172.73 (9)C1—O1—C5—C10160.34 (9)
N2—C1—C2—C3172.47 (10)C7—O3—C6—O20.41 (16)
O1—C1—C2—C37.52 (15)C7—O3—C6—C4177.50 (9)
C1—C2—C3—C423.01 (13)C5—C4—C6—O2155.83 (11)
C9—C2—C3—C4157.24 (9)C3—C4—C6—O224.56 (14)
C1—C2—C3—C11101.52 (11)C5—C4—C6—O327.08 (14)
C9—C2—C3—C1178.22 (11)C3—C4—C6—O3152.53 (9)
C2—C3—C4—C519.51 (13)C6—O3—C7—C8179.26 (11)
C11—C3—C4—C5107.12 (10)C4—C3—C11—C13167.94 (8)
C2—C3—C4—C6160.87 (8)C2—C3—C11—C1368.32 (10)
C11—C3—C4—C672.50 (9)C4—C3—C11—C1266.72 (11)
C3—C4—C5—O10.42 (14)C2—C3—C11—C1257.03 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.082.9411 (11)174
N2—H2B···N3ii0.862.193.0269 (13)164
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H18N2O3
Mr250.29
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.0856 (1), 9.3193 (2), 10.4563 (2)
α, β, γ (°)65.652 (1), 69.679 (1), 76.105 (1)
V3)668.80 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.44 × 0.36 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.959, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
17876, 4664, 3324
Rint0.027
(sin θ/λ)max1)0.748
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.143, 1.05
No. of reflections4664
No. of parameters167
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.24

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.082.9411 (11)174.3
N2—H2B···N3ii0.862.193.0269 (13)163.6
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.
 

References

First citationBernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH.  Google Scholar
First citationBloxham, J., Dell, C. P. & Smith, C. W. (1994). Heterocycles, 38, 399–408.  CAS Google Scholar
First citationBruker (1998). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationElagamey, A. G. A., El-Taweel, F. M., Khodeir, M. N. M. & Elnagdi, M. H. (1993). Bull. Chem. Soc. Jpn, 66, 464–468.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhafagy, M., Abd El-Wahab, A., Eid, F. & El-Agrody, A. (2002). Il Farmaco, 57, 715–722.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMessaâd, M., Chabchoub, F. & Salem, M. (2005). Heterocycl. Commun. 11, 139–144.  Google Scholar
First citationMessaâd, M., Chabchoub, F. & Salem, M. (2006). Phosphorus Sulfur Silicon Relat. Elem., 181, 2529–2534.  Google Scholar
First citationMohr, S. J., Chirigos, M. A., Fuhrman, F. S. & Pryor, J. W. (1975). Cancer Res. 35, 3750–3754.  PubMed CAS Web of Science Google Scholar
First citationOhira, T. & Yatagai, M. (1993). J. Jpn Wood Res. Soc. 39, 237–242.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTandon, V. K., Vaish, M., Jain, S., Bhakuni, D. S. & Srinal, R. C. (1991). Indian J. Pharm. Sci. 53, 22–23.  CAS Google Scholar
First citationWang, S., Milne, G. W., Yan, X., Posey, I. J., Nicklaus, M. C., Grahem, L. & Rice, W. G. (1996). J. Med. Chem. 39, 2047–2054.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZamocka, J., Misikova, E. & Durinda, J. (1992). Cesk Farm. 41, 170–172.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds