metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua-μ-oxalato-μ-pyrazine-2-carbox­yl­ato-lanthanum(III)]

aSchool of Chemistry and the Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and bKey Laboratory of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510631, People's Republic of China
*Correspondence e-mail: luoyf2004@yahoo.com.cn

(Received 1 December 2008; accepted 9 December 2008; online 17 December 2008)

In the title complex, [La(C5H3N2O2)(C2O4)(H2O)2]n, the LaIII ion is coordinated by one N and three O atoms from two pyrazine-2-carboxylate ligands, by four O atoms from two oxalate ligands and by two O atoms of two water molecules, displaying a distorted bicapped square-anti­prismatic geometry. The carboxyl­ate groups of pyrazine-2-carboxyl­ate and oxalate ligands link the lanthanum metal centres, forming layers parallel to (10[\overline{1}]). The layers are further connected by inter­molecular O—H⋯O and N—H⋯O hydrogen-bonding inter­actions, forming a three-dimensional supra­molecular network.

Related literature

For general background, see: Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Rizk et al. (2005[Rizk, A. T., Kizk, A., Ilner, C. A. & Halcrow, M. A. (2005). CrystEngCommun, 7, 359-362.]); Zeng et al. (2007[Zeng, R.-H., Qiu, Y.-C., Cai, Y.-P., Wu, J.-Z. & Deng, H. (2007). Acta Cryst. E63, m1666.]).

[Scheme 1]

Experimental

Crystal data
  • [La(C5H3N2O2)(C2O4)(H2O)2]

  • Mr = 386.06

  • Triclinic, [P \overline 1]

  • a = 8.040 (3) Å

  • b = 8.7343 (18) Å

  • c = 8.8329 (18) Å

  • α = 115.552 (2)°

  • β = 101.447 (3)°

  • γ = 95.789 (3)°

  • V = 536.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.02 mm−1

  • T = 296 (2) K

  • 0.17 × 0.16 × 0.14 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]) Tmin = 0.548, Tmax = 0.603 (expected range = 0.518–0.569)

  • 2761 measured reflections

  • 1898 independent reflections

  • 1787 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.07

  • 1898 reflections

  • 163 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.61 e Å−3

  • Δρmin = −1.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯N1i 0.84 1.97 2.796 (6) 170
O2W—H3W⋯O2ii 0.84 1.94 2.737 (5) 157
O1W—H2W⋯O3iii 0.84 2.05 2.874 (5) 167
O2W—H4W⋯O6iv 0.84 2.09 2.825 (5) 146
Symmetry codes: (i) x, y-1, z-1; (ii) x, y, z-1; (iii) -x+1, -y, -z+1; (iv) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design, synthesis, characterization, and properties of supramolecular networks formed by using functionalized organic molecules as bridges between metal centers are of great interest(Eddaoudi et al., 2001; Rizk et al., 2005; Zeng et al.,2007). As a building block, pyrazine-2-carboxylic acid and oxalic acid are excellent candidates for the construction of supramolecular complexes. Herein, we reported the new coordination polymer, (I).

In (I), each LaIII centre is coordinated by seven oxygen atoms and one nitrogen atom from two pyrazine-2-carboxylate ligands, two oxalate ligands and two water molecules (Fig. 1), and represents a distorted bicapped square antiprismatic geometry. The LaIII ions are linked by pyrazine-2-carboxylate ligands and oxalate ligands to form layers parallel to the (1 0 -1) plane (Fig.2), and the adjacent La···La separations are 6.570 (4) and 4.506 (5) Å, respectively. O—H···O and N—H···O hydrogen bonds (Table 1), involving the pyrazine-2-carboxylate ligands, coordinating water molecules and oxalate ligands assemble neighboring layers into a three-dimensional supramolecular network motif .

Related literature top

For general background, see: Eddaoudi et al. (2001); Rizk et al. (2005); Zeng et al. (2007).

Experimental top

A mixture of La2O3 (0.245 g; 0.75 mmol), pyrazine-2-carboxylic acid (0.186 g; 1.5 mmol), oxalic acid(0.135 g; 1.5 mmol), water (10 mL) in the presence of HNO3 (0.024 g; 0.385 mmol) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless-steel autoclave (20 mL, capacity). The autoclave was heated and maintained at 433K for 3 days, and then cooled to room temperature at 5 K h-1 and obtained the colorless block crystals.

Refinement top

Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.84 Å and H···H = 1.35 Å, and with Uiso(H) = 1.5 Ueq(O). In the last cycles of refinement they were treated as riding on the O atoms. Carbon-bound H atoms were placed at calculated positions and were treated as riding on their parent C atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), PLATON (Spek, 2003) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view showing the atomic-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i)1-x, 1-y, 1-z; (ii)1-x, -y, -z; (iii)1-x, -y, 1-z]
[Figure 2] Fig. 2. View of the layered network of the title structure.
Poly[diaqua-µ-oxalato-µ-pyrazine-2-carboxylato-lanthanum(III)] top
Crystal data top
[La(C5H3N2O2)(C2O4)(H2O)2]Z = 2
Mr = 386.06F(000) = 368
Triclinic, P1Dx = 2.391 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.040 (3) ÅCell parameters from 6377 reflections
b = 8.7343 (18) Åθ = 1.7–28.0°
c = 8.8329 (18) ŵ = 4.02 mm1
α = 115.552 (2)°T = 296 K
β = 101.447 (3)°Block, colourless
γ = 95.789 (3)°0.17 × 0.16 × 0.14 mm
V = 536.1 (3) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
1898 independent reflections
Radiation source: fine-focus sealed tube1787 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.2°, θmin = 2.6°
Absorption correction: multi-scan
(APEX2; Bruker, 2004)
h = 59
Tmin = 0.548, Tmax = 0.603k = 1010
2761 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0533P)2]
where P = (Fo2 + 2Fc2)/3
1898 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 1.61 e Å3
6 restraintsΔρmin = 1.22 e Å3
Crystal data top
[La(C5H3N2O2)(C2O4)(H2O)2]γ = 95.789 (3)°
Mr = 386.06V = 536.1 (3) Å3
Triclinic, P1Z = 2
a = 8.040 (3) ÅMo Kα radiation
b = 8.7343 (18) ŵ = 4.02 mm1
c = 8.8329 (18) ÅT = 296 K
α = 115.552 (2)°0.17 × 0.16 × 0.14 mm
β = 101.447 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
1898 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2004)
1787 reflections with I > 2σ(I)
Tmin = 0.548, Tmax = 0.603Rint = 0.020
2761 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0316 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.07Δρmax = 1.61 e Å3
1898 reflectionsΔρmin = 1.22 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2750 (6)0.2794 (6)0.7523 (6)0.0218 (10)
C20.2577 (7)0.4053 (7)0.9066 (7)0.0285 (11)
H20.31910.41221.01110.034*
C30.0676 (7)0.4974 (7)0.7564 (7)0.0304 (12)
H30.00790.57060.75290.036*
C40.0849 (7)0.3716 (7)0.6014 (7)0.0289 (11)
H40.02020.36210.49680.035*
C50.5718 (6)0.4928 (6)0.5701 (6)0.0204 (10)
C60.0553 (6)0.0282 (6)0.0653 (6)0.0218 (10)
C70.3936 (6)0.1564 (7)0.7458 (6)0.0238 (10)
La10.33941 (3)0.08521 (3)0.32247 (3)0.01745 (13)
N10.1560 (6)0.5173 (6)0.9109 (6)0.0284 (10)
N80.1914 (5)0.2634 (5)0.5974 (5)0.0235 (9)
O10.3920 (5)0.0398 (4)0.5980 (4)0.0248 (8)
O20.4933 (5)0.1760 (5)0.8841 (5)0.0314 (8)
O30.5571 (5)0.3495 (4)0.5715 (4)0.0246 (7)
O40.6879 (4)0.6241 (4)0.6678 (4)0.0264 (8)
O50.0155 (4)0.0721 (5)0.2201 (4)0.0299 (8)
O60.2119 (4)0.0240 (5)0.0025 (4)0.0292 (8)
O1W0.2022 (5)0.2208 (4)0.2499 (4)0.0271 (8)
O2W0.5746 (5)0.1980 (5)0.2097 (4)0.0300 (8)
H1W0.18270.29130.14410.045*
H3W0.52930.20790.12100.045*
H2W0.25830.26300.30710.045*
H4W0.66110.15340.19000.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.018 (2)0.027 (2)0.021 (2)0.007 (2)0.005 (2)0.012 (2)
C20.024 (3)0.033 (3)0.026 (3)0.008 (2)0.004 (2)0.012 (2)
C30.030 (3)0.030 (3)0.033 (3)0.012 (2)0.010 (2)0.014 (2)
C40.031 (3)0.033 (3)0.029 (3)0.017 (2)0.007 (2)0.018 (2)
C50.015 (2)0.025 (2)0.021 (2)0.0083 (19)0.005 (2)0.009 (2)
C60.017 (2)0.023 (2)0.024 (2)0.0043 (19)0.004 (2)0.010 (2)
C70.018 (2)0.033 (3)0.025 (3)0.005 (2)0.007 (2)0.016 (2)
La10.01352 (18)0.01999 (18)0.01806 (18)0.00464 (11)0.00163 (12)0.00898 (13)
N10.022 (2)0.027 (2)0.031 (2)0.0072 (18)0.0067 (19)0.0093 (19)
N80.022 (2)0.027 (2)0.023 (2)0.0084 (17)0.0035 (17)0.0132 (18)
O10.0267 (19)0.0270 (18)0.0238 (18)0.0104 (15)0.0089 (15)0.0126 (15)
O20.028 (2)0.046 (2)0.0244 (18)0.0153 (17)0.0049 (16)0.0195 (17)
O30.0261 (19)0.0225 (17)0.0260 (18)0.0047 (14)0.0020 (15)0.0143 (15)
O40.0196 (18)0.0241 (18)0.0316 (19)0.0037 (15)0.0015 (15)0.0131 (16)
O50.0172 (18)0.049 (2)0.0197 (18)0.0097 (16)0.0016 (15)0.0132 (16)
O60.0147 (18)0.046 (2)0.0220 (17)0.0100 (16)0.0020 (14)0.0123 (16)
O1W0.0262 (19)0.0239 (18)0.0263 (18)0.0031 (15)0.0015 (15)0.0100 (15)
O2W0.027 (2)0.039 (2)0.0272 (19)0.0109 (17)0.0114 (16)0.0166 (17)
Geometric parameters (Å, º) top
C1—N81.340 (6)C7—O11.259 (6)
C1—C21.378 (7)La1—O1W2.533 (3)
C1—C71.497 (7)La1—O4i2.536 (3)
C2—N11.330 (7)La1—O62.544 (3)
C2—H20.9300La1—O32.551 (3)
C3—N11.336 (7)La1—O5ii2.555 (4)
C3—C41.382 (7)La1—O12.592 (3)
C3—H30.9300La1—O2W2.600 (4)
C4—N81.332 (7)La1—O1iii2.623 (3)
C4—H40.9300La1—N82.828 (4)
C5—O41.242 (6)La1—O2iii2.889 (4)
C5—O31.250 (6)La1—C7iii3.124 (5)
C5—C5i1.574 (9)O1W—H1W0.8385
C6—O51.239 (6)O1W—H2W0.8353
C6—O61.261 (6)O2W—H3W0.8400
C6—C6ii1.539 (9)O2W—H4W0.8421
C7—O21.252 (6)
N8—C1—C2122.0 (5)O5ii—La1—O1iii154.21 (12)
N8—C1—C7115.3 (4)O1—La1—O1iii60.45 (13)
C2—C1—C7122.7 (5)O2W—La1—O1iii75.58 (11)
N1—C2—C1122.1 (5)O1W—La1—N897.55 (12)
N1—C2—H2118.9O4i—La1—N872.37 (12)
C1—C2—H2118.9O6—La1—N8128.17 (11)
N1—C3—C4122.0 (5)O3—La1—N868.57 (12)
N1—C3—H3119.0O5ii—La1—N866.44 (11)
C4—C3—H3119.0O1—La1—N858.52 (11)
N8—C4—C3121.9 (5)O2W—La1—N8131.02 (12)
N8—C4—H4119.0O1iii—La1—N8115.86 (11)
C3—C4—H4119.0O1W—La1—O2iii66.41 (11)
O4—C5—O3126.6 (4)O4i—La1—O2iii129.49 (11)
O4—C5—C5i117.0 (5)O6—La1—O2iii68.05 (11)
O3—C5—C5i116.4 (5)O3—La1—O2iii112.40 (11)
O5—C6—O6126.1 (4)O5ii—La1—O2iii121.50 (11)
O5—C6—C6ii118.0 (5)O1—La1—O2iii99.45 (10)
O6—C6—C6ii115.9 (5)O2W—La1—O2iii65.10 (11)
O2—C7—O1122.7 (5)O1iii—La1—O2iii46.83 (10)
O2—C7—C1119.7 (5)N8—La1—O2iii157.23 (11)
O1—C7—C1117.5 (4)O1W—La1—C7iii68.77 (12)
O2—C7—La1iii67.6 (3)O4i—La1—C7iii137.10 (12)
O1—C7—La1iii55.5 (3)O6—La1—C7iii91.66 (12)
C1—C7—La1iii169.0 (3)O3—La1—C7iii95.00 (12)
O1W—La1—O4i150.33 (12)O5ii—La1—C7iii139.98 (12)
O1W—La1—O682.82 (11)O1—La1—C7iii78.74 (11)
O4i—La1—O682.26 (12)O2W—La1—C7iii70.04 (12)
O1W—La1—O3139.37 (10)O1iii—La1—C7iii23.29 (11)
O4i—La1—O363.95 (11)N8—La1—C7iii136.97 (12)
O6—La1—O3136.33 (11)O2iii—La1—C7iii23.62 (11)
O1W—La1—O5ii77.14 (12)C2—N1—C3116.0 (5)
O4i—La1—O5ii73.25 (12)C4—N8—C1115.9 (4)
O6—La1—O5ii63.19 (11)C4—N8—La1126.3 (3)
O3—La1—O5ii124.85 (11)C1—N8—La1114.8 (3)
O1W—La1—O168.69 (11)C7—O1—La1122.9 (3)
O4i—La1—O1122.78 (11)C7—O1—La1iii101.2 (3)
O6—La1—O1151.51 (12)La1—O1—La1iii119.55 (13)
O3—La1—O171.74 (11)C7—O2—La1iii88.8 (3)
O5ii—La1—O1108.11 (11)C5—O3—La1120.1 (3)
O1W—La1—O2W130.93 (11)C5—O4—La1i120.6 (3)
O4i—La1—O2W67.57 (12)C6—O5—La1ii121.0 (3)
O6—La1—O2W72.86 (11)C6—O6—La1121.8 (3)
O3—La1—O2W69.18 (11)La1—O1W—H1W113.1
O5ii—La1—O2W123.82 (12)La1—O1W—H2W115.0
O1—La1—O2W126.58 (11)H1W—O1W—H2W107.3
O1W—La1—O1iii77.11 (11)La1—O2W—H3W111.1
O4i—La1—O1iii132.53 (11)La1—O2W—H4W123.8
O6—La1—O1iii114.65 (11)H3W—O2W—H4W106.5
O3—La1—O1iii75.79 (11)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N1iv0.841.972.796 (6)170
O2W—H3W···O2v0.841.942.737 (5)157
O1W—H2W···O3iii0.842.052.874 (5)167
O2W—H4W···O6vi0.842.092.825 (5)146
Symmetry codes: (iii) x+1, y, z+1; (iv) x, y1, z1; (v) x, y, z1; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[La(C5H3N2O2)(C2O4)(H2O)2]
Mr386.06
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.040 (3), 8.7343 (18), 8.8329 (18)
α, β, γ (°)115.552 (2), 101.447 (3), 95.789 (3)
V3)536.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)4.02
Crystal size (mm)0.17 × 0.16 × 0.14
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2004)
Tmin, Tmax0.548, 0.603
No. of measured, independent and
observed [I > 2σ(I)] reflections
2761, 1898, 1787
Rint0.020
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.07
No. of reflections1898
No. of parameters163
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.61, 1.22

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), PLATON (Spek, 2003) and SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N1i0.841.972.796 (6)170.0
O2W—H3W···O2ii0.841.942.737 (5)156.8
O1W—H2W···O3iii0.842.052.874 (5)166.6
O2W—H4W···O6iv0.842.092.825 (5)146.1
Symmetry codes: (i) x, y1, z1; (ii) x, y, z1; (iii) x+1, y, z+1; (iv) x+1, y, z.
 

Acknowledgements

The authors acknowledge South China Normal University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRizk, A. T., Kizk, A., Ilner, C. A. & Halcrow, M. A. (2005). CrystEngCommun, 7, 359–362.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, R.-H., Qiu, Y.-C., Cai, Y.-P., Wu, J.-Z. & Deng, H. (2007). Acta Cryst. E63, m1666.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds