organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,6-Di­chloro­benzo­yl)-3-(3-meth­oxy­phen­yl)thio­urea

aDepartment of Chemistry, Quaid-i-Azam University Islamabad, 45320-Pakistan, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: khawar_rauf@hotmail.com

(Received 3 December 2008; accepted 6 December 2008; online 17 December 2008)

The two aromatic rings in the title compound, C15H12Cl2N2O2S, enclose a dihedral angle of 37.49 (6)°. The mol­ecule exists in the solid state in its thione form with typical thio­urea C—S and C—O bonds lengths, as well as shortened C—N bonds. An intra­molecular N—H⋯O hydrogen bond stabilizes the mol­ecular conformation. In the crystal, mol­ecules are connected by N—H⋯O and N—H⋯S hydrogen bonds, forming chains running along the a axis.

Related literature

For general background, see: Darlington et al. (1996[Darlington, A., Vishnevetskia, K. & Blake, T. T. (1996). Physiol. Plant. 97, 217-222.]); Dowding & Leeds (1971[Dowding, J. & Leeds, W. G. (1971). Ger. Patent 2 040 580.]); Sasse et al. (1969[Sasse, K., Barden, R., Eue, L. & Hack, H. (1969). S. Afr. Patent 900 256.]); Khawar Rauf et al., (2006a[Khawar Rauf, M., Badshah, A. & Bolte, M. (2006a). Acta Cryst. E62, o1859-o1860.],b[Khawar Rauf, M., Badshah, A. & Bolte, M. (2006b). Acta Cryst. E62, o2221-o2222.],c[Khawar Rauf, M., Badshah, A. & Bolte, M. (2006c). Acta Cryst. E62, o2444-o2445.], 2007[Khawar Rauf, M., Badshah, A., Bolte, M. & Ahmad, I. (2007). Acta Cryst. E63, o1073-o1075.]); Santrucek & Krepelka (1988[Santrucek, M. & Krepelka, J. (1988). Drugs Fut. 13, 974-996.]); Teruhisa et al. (1972[Teruhisa, N., Naoo, I., Yoshisuke, K. & Saburo, K. (1972). Jpn Tokkyo Koho. 71, 9-214.]). For related structures, see: Khawar Rauf et al. (2006a[Khawar Rauf, M., Badshah, A. & Bolte, M. (2006a). Acta Cryst. E62, o1859-o1860.],b[Khawar Rauf, M., Badshah, A. & Bolte, M. (2006b). Acta Cryst. E62, o2221-o2222.],c[Khawar Rauf, M., Badshah, A. & Bolte, M. (2006c). Acta Cryst. E62, o2444-o2445.], 2007[Khawar Rauf, M., Badshah, A., Bolte, M. & Ahmad, I. (2007). Acta Cryst. E63, o1073-o1075.]). For a description of the Cambridge Database, see: Allen, (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12Cl2N2O2S

  • Mr = 355.23

  • Monoclinic, P 21 /c

  • a = 10.7215 (6) Å

  • b = 11.2370 (8) Å

  • c = 13.8065 (8) Å

  • β = 104.447 (4)°

  • V = 1610.77 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 173 (2) K

  • 0.47 × 0.47 × 0.44 mm

Data collection
  • STOE IPDS II two-circle-diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.786, Tmax = 0.797

  • 19919 measured reflections

  • 4113 independent reflections

  • 3704 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.087

  • S = 1.07

  • 4113 reflections

  • 218 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.89 (2) 1.97 (2) 2.7007 (15) 137.9 (18)
N2—H2⋯O1i 0.89 (2) 2.38 (2) 3.1015 (16) 137.8 (18)
N1—H1⋯S1ii 0.852 (18) 2.479 (19) 3.3141 (12) 166.7 (16)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiourea and Urea derivatives have played an important role in developing agrochemicals and pharmacological agents, for example. Ureidothiazoles are effective herbicides for a broad spectrum of weeds (Dowding & Leeds, 1971). N-Methylfurfurylurea herbicides gave selective weed control in cereals, as well as cotton and beans (Sasse et al., 1969). N-Methyl-N-(2-thiazolyl)-N'-alkyl substituted thioureas are plant growth regulators that inhibit stem alongation of rice and kidney bean plants without phytotoxity (Teruhisa et al., 1972). 4-Aminomethyl derivatives of 2-methyl-5-hydroxybenzimidazole have been reported as an antioxidants and stimmulators of plant growth of dicotyledons under drought conditions (Santrucek & Krepelka, 1988; Darlington et al., 1996). As part of interest in N,N'-disubstituted thioureas, we now report the crystal structure of the title compound (I).

A view of compound (I), is shown in Fig 1. The N—C bonds differ significantly from one another but are short in comparison with the typical value for an N—C single bond (1.479 A°), and the C1—S1 bond is slightly shorter than a C—S double bond (1.681 A°), indicating partial electron delocalization in the N—C(S)—N(H)—C(O) structural segment. These distances are similar to those usually found in other substituted thioureas [Khawar Rauf et al., 2006a, 2006b, 2006c, 2007; Cambridge Structural Database, Version 5.28 (Allen, 2002)]. The dihedral angle between the aromatic rings is 37.49 (6)°, and the corresponding angles with the thiourea plane are 81.41 (7)° for the C11–C16 ring and 44.12 (7)° for the C21–C26 ring. The thiocarbonyl and carbonyl groups are almost coplanar, as reflected by the O1—C2—N2—C1 and C2—N2— C1—N1 torsion angles. This is associated with the intramolecular N—H···O hydrogen bond (Table 1), forming a six-membered ring commonly observed in this class of compounds. In the crystal packing of (I), intermolecular N—H···S and N-H···O hydrogen bonds link the molecules into chains running along the a axis (Table 1, Fig. 2).

Related literature top

For general background, see: Darlington et al. (1996); Dowding & Leeds (1971); Sasse et al. (1969); Khawar Rauf et al., (2006a,b,c, 2007); Santrucek & Krepelka (1988); Teruhisa et al. (1972). For related structures, see: Khawar Rauf et al. (2006a,b,c, 2007). For a description of the Cambridge Database, see: Allen, (2002);

Experimental top

Freshly prepared 2,6-Dichlorobenzoylisothiocyanate (2.32 g, 10 mmol) was added in acetone (30 ml) and stirred for 10 minutes. Afterwards neat 3-methoxyaniline (1.23 g, 10 mmol) was added and the resulting mixture was stirred for 1 h.The reaction mixture was then poured into acidified (pH 4) water and stirred well. The solid product was separated and washed with deionized water and purified by recrystallization from methanol/ 1,1-dichloromethane (1:1 v/v) to give fine crystals of the title compound (I), with an overall yield of 88%. Full spectroscopic and physical characterization will be reported elsewhere.

Refinement top

Hydrogen atoms bonded to C were included in calculated positions and refined as riding on their parent C atom with C—H = 0.95 Å Uiso(H) = 1.2U(Ceq) or C—H = 0.98 Å and Uiso(H) = 1.5U(Ceq), respectively, for aromatic and methyl C atoms. The methyl group is disordered over two positions with site occupation factors 0.76 (3) and 0.24 (3). For refinement the O—Cmethyl and Caromatic···Cmethyl distances were restrained to be equal with an effective standard deviation of 0.02 Å. H atoms bonded to N were refined freely.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed lines.
[Figure 2] Fig. 2. Partial packing view of (I) onto the ac plane. H atoms not involved in hydrogen bonding are omitted. Hydrogen bonds are shown as dashed lines.
1-(2,6-Dichlorobenzoyl)-3-(3-methoxyphenyl)thiourea top
Crystal data top
C15H12Cl2N2O2SF(000) = 728
Mr = 355.23Dx = 1.465 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7361 reflections
a = 10.7215 (6) Åθ = 3.5–28.2°
b = 11.2370 (8) ŵ = 0.54 mm1
c = 13.8065 (8) ÅT = 173 K
β = 104.447 (4)°Block, colourless
V = 1610.77 (17) Å30.47 × 0.47 × 0.44 mm
Z = 4
Data collection top
STOE IPDS II two-circle-
diffractometer
4113 independent reflections
Radiation source: fine-focus sealed tube3704 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scansθmax = 28.6°, θmin = 3.6°
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
h = 1314
Tmin = 0.786, Tmax = 0.797k = 1515
19919 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0324P)2 + 0.7918P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4113 reflectionsΔρmax = 0.33 e Å3
218 parametersΔρmin = 0.33 e Å3
2 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0178 (13)
Crystal data top
C15H12Cl2N2O2SV = 1610.77 (17) Å3
Mr = 355.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7215 (6) ŵ = 0.54 mm1
b = 11.2370 (8) ÅT = 173 K
c = 13.8065 (8) Å0.47 × 0.47 × 0.44 mm
β = 104.447 (4)°
Data collection top
STOE IPDS II two-circle-
diffractometer
4113 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
3704 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.797Rint = 0.060
19919 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0352 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.33 e Å3
4113 reflectionsΔρmin = 0.33 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.10910 (3)0.40403 (4)0.62296 (3)0.02598 (11)
Cl10.19499 (5)0.79513 (4)0.43009 (3)0.03990 (12)
Cl20.19839 (4)0.38864 (4)0.22155 (3)0.03747 (12)
O10.37925 (9)0.51869 (10)0.42963 (7)0.0259 (2)
O20.41731 (16)0.32269 (15)0.95663 (9)0.0556 (4)
N10.18818 (11)0.50043 (11)0.47460 (8)0.0194 (2)
H10.1077 (18)0.5144 (16)0.4543 (13)0.021 (4)*
N20.35139 (11)0.41869 (11)0.60087 (8)0.0190 (2)
H20.400 (2)0.4382 (19)0.5596 (16)0.038 (5)*
C10.26337 (12)0.53548 (12)0.41218 (9)0.0177 (2)
C20.22582 (12)0.44147 (12)0.56675 (9)0.0175 (2)
C110.18968 (12)0.59740 (12)0.31805 (9)0.0179 (2)
C120.15568 (14)0.71706 (13)0.31802 (11)0.0238 (3)
C130.09316 (16)0.77639 (16)0.23118 (13)0.0348 (4)
H130.07150.85820.23310.042*
C140.06301 (18)0.71414 (19)0.14161 (13)0.0419 (5)
H140.01990.75350.08170.050*
C150.09516 (17)0.59545 (18)0.13874 (11)0.0377 (4)
H150.07400.55340.07710.045*
C160.15873 (14)0.53731 (14)0.22639 (10)0.0241 (3)
C210.41141 (12)0.35406 (12)0.69003 (9)0.0179 (2)
C220.38111 (14)0.37739 (14)0.78086 (10)0.0247 (3)
H220.32020.43710.78560.030*
C230.44246 (16)0.31089 (15)0.86431 (10)0.0294 (3)
C240.53374 (15)0.22526 (14)0.85823 (11)0.0285 (3)
H240.57470.18020.91560.034*
C250.56442 (15)0.20629 (14)0.76804 (11)0.0267 (3)
H250.62800.14890.76400.032*
C260.50342 (13)0.27027 (13)0.68283 (10)0.0219 (3)
H260.52460.25660.62090.026*
C270.3347 (12)0.4200 (12)0.9700 (4)0.067 (2)0.76 (3)
H27A0.32390.41851.03840.101*0.76 (3)
H27B0.25050.41170.92240.101*0.76 (3)
H27C0.37390.49570.95820.101*0.76 (3)
C27'0.293 (2)0.374 (2)0.9566 (14)0.050 (4)0.24 (3)
H27D0.28330.37761.02540.075*0.24 (3)
H27E0.22410.32370.91630.075*0.24 (3)
H27F0.28640.45400.92820.075*0.24 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01571 (15)0.0392 (2)0.02369 (18)0.00331 (13)0.00612 (12)0.01717 (14)
Cl10.0503 (3)0.0295 (2)0.0402 (2)0.00054 (17)0.01176 (19)0.00903 (16)
Cl20.0458 (2)0.0322 (2)0.0353 (2)0.00040 (17)0.01168 (17)0.00861 (15)
O10.0145 (4)0.0418 (6)0.0210 (5)0.0029 (4)0.0040 (4)0.0109 (4)
O20.0727 (10)0.0803 (11)0.0164 (5)0.0448 (9)0.0159 (6)0.0154 (6)
N10.0129 (5)0.0287 (6)0.0162 (5)0.0031 (4)0.0026 (4)0.0089 (4)
N20.0150 (5)0.0272 (6)0.0143 (5)0.0021 (4)0.0025 (4)0.0068 (4)
C10.0167 (6)0.0219 (6)0.0137 (5)0.0000 (5)0.0023 (4)0.0031 (4)
C20.0165 (5)0.0202 (6)0.0147 (5)0.0010 (5)0.0021 (4)0.0038 (4)
C110.0149 (5)0.0241 (6)0.0147 (6)0.0004 (5)0.0038 (4)0.0054 (5)
C120.0217 (6)0.0264 (7)0.0249 (7)0.0025 (5)0.0086 (5)0.0061 (5)
C130.0310 (8)0.0355 (9)0.0403 (9)0.0124 (7)0.0133 (7)0.0202 (7)
C140.0357 (9)0.0623 (12)0.0267 (8)0.0154 (8)0.0057 (7)0.0253 (8)
C150.0359 (8)0.0600 (12)0.0147 (6)0.0045 (8)0.0013 (6)0.0056 (7)
C160.0228 (6)0.0306 (7)0.0182 (6)0.0002 (6)0.0040 (5)0.0018 (5)
C210.0157 (5)0.0216 (6)0.0141 (5)0.0001 (5)0.0004 (4)0.0052 (4)
C220.0259 (7)0.0298 (7)0.0175 (6)0.0089 (6)0.0036 (5)0.0047 (5)
C230.0335 (8)0.0400 (9)0.0135 (6)0.0107 (7)0.0039 (5)0.0058 (6)
C240.0307 (7)0.0323 (8)0.0199 (6)0.0084 (6)0.0011 (6)0.0099 (6)
C250.0260 (7)0.0276 (7)0.0255 (7)0.0094 (6)0.0045 (6)0.0063 (5)
C260.0215 (6)0.0263 (7)0.0175 (6)0.0027 (5)0.0042 (5)0.0033 (5)
C270.078 (4)0.100 (5)0.0266 (15)0.053 (4)0.018 (2)0.004 (2)
C27'0.075 (9)0.060 (9)0.024 (6)0.031 (7)0.030 (6)0.015 (5)
Geometric parameters (Å, º) top
S1—C21.6822 (13)C14—H140.9500
Cl1—C121.7367 (16)C15—C161.394 (2)
Cl2—C161.7293 (16)C15—H150.9500
O1—C11.2198 (16)C21—C261.3852 (19)
O2—C231.3735 (17)C21—C221.3965 (18)
O2—C27'1.454 (12)C22—C231.3930 (19)
O2—C271.448 (5)C22—H220.9500
N1—C11.3763 (16)C23—C241.390 (2)
N1—C21.4015 (16)C24—C251.382 (2)
N1—H10.852 (18)C24—H240.9500
N2—C21.3355 (16)C25—C261.3946 (19)
N2—C211.4358 (15)C25—H250.9500
N2—H20.89 (2)C26—H260.9500
C1—C111.5116 (17)C27—H27A0.9800
C11—C121.393 (2)C27—H27B0.9800
C11—C161.3993 (19)C27—H27C0.9800
C12—C131.389 (2)C27'—H27D0.9800
C13—C141.387 (3)C27'—H27E0.9800
C13—H130.9500C27'—H27F0.9800
C14—C151.381 (3)
C23—O2—C27'115.5 (7)C11—C16—Cl2119.74 (11)
C23—O2—C27117.3 (3)C26—C21—C22121.43 (12)
C1—N1—C2128.51 (11)C26—C21—N2117.20 (11)
C1—N1—H1116.4 (12)C22—C21—N2121.34 (12)
C2—N1—H1115.1 (12)C23—C22—C21118.32 (13)
C2—N2—C21126.59 (11)C23—C22—H22120.8
C2—N2—H2115.4 (13)C21—C22—H22120.8
C21—N2—H2117.6 (13)O2—C23—C24115.28 (13)
O1—C1—N1123.98 (12)O2—C23—C22123.66 (14)
O1—C1—C11121.95 (11)C24—C23—C22121.05 (13)
N1—C1—C11114.07 (11)C25—C24—C23119.40 (13)
N2—C2—N1116.58 (11)C25—C24—H24120.3
N2—C2—S1126.15 (10)C23—C24—H24120.3
N1—C2—S1117.27 (9)C24—C25—C26120.92 (13)
C12—C11—C16117.55 (12)C24—C25—H25119.5
C12—C11—C1121.67 (12)C26—C25—H25119.5
C16—C11—C1120.70 (12)C21—C26—C25118.84 (12)
C13—C12—C11122.22 (15)C21—C26—H26120.6
C13—C12—Cl1118.95 (13)C25—C26—H26120.6
C11—C12—Cl1118.82 (10)O2—C27—H27A109.5
C14—C13—C12118.84 (16)O2—C27—H27B109.5
C14—C13—H13120.6H27A—C27—H27B109.5
C12—C13—H13120.6O2—C27—H27C109.5
C15—C14—C13120.57 (14)H27A—C27—H27C109.5
C15—C14—H14119.7H27B—C27—H27C109.5
C13—C14—H14119.7O2—C27'—H27D109.5
C14—C15—C16119.94 (16)O2—C27'—H27E109.5
C14—C15—H15120.0H27D—C27'—H27E109.5
C16—C15—H15120.0O2—C27'—H27F109.5
C15—C16—C11120.87 (15)H27D—C27'—H27F109.5
C15—C16—Cl2119.39 (12)H27E—C27'—H27F109.5
C2—N1—C1—O10.2 (2)C12—C11—C16—C150.6 (2)
C2—N1—C1—C11179.99 (13)C1—C11—C16—C15177.50 (13)
C21—N2—C2—N1176.37 (12)C12—C11—C16—Cl2179.99 (10)
C21—N2—C2—S12.5 (2)C1—C11—C16—Cl23.08 (18)
C1—N1—C2—N22.1 (2)C2—N2—C21—C26135.10 (15)
C1—N1—C2—S1176.87 (12)C2—N2—C21—C2246.8 (2)
O1—C1—C11—C1299.98 (17)C26—C21—C22—C232.4 (2)
N1—C1—C11—C1280.23 (16)N2—C21—C22—C23179.66 (14)
O1—C1—C11—C1676.83 (18)C27'—O2—C23—C24156.8 (14)
N1—C1—C11—C16102.97 (15)C27—O2—C23—C24172.8 (8)
C16—C11—C12—C130.1 (2)C27'—O2—C23—C2222.3 (14)
C1—C11—C12—C13176.99 (13)C27—O2—C23—C228.1 (8)
C16—C11—C12—Cl1178.93 (10)C21—C22—C23—O2177.57 (17)
C1—C11—C12—Cl12.03 (17)C21—C22—C23—C241.4 (2)
C11—C12—C13—C140.4 (2)O2—C23—C24—C25179.39 (17)
Cl1—C12—C13—C14179.37 (13)C22—C23—C24—C250.3 (3)
C12—C13—C14—C150.3 (3)C23—C24—C25—C261.2 (3)
C13—C14—C15—C160.1 (3)C22—C21—C26—C251.5 (2)
C14—C15—C16—C110.6 (2)N2—C21—C26—C25179.58 (13)
C14—C15—C16—Cl2179.99 (14)C24—C25—C26—C210.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.89 (2)1.97 (2)2.7007 (15)137.9 (18)
N2—H2···O1i0.89 (2)2.38 (2)3.1015 (16)137.8 (18)
N1—H1···S1ii0.852 (18)2.479 (19)3.3141 (12)166.7 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H12Cl2N2O2S
Mr355.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.7215 (6), 11.2370 (8), 13.8065 (8)
β (°) 104.447 (4)
V3)1610.77 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.47 × 0.47 × 0.44
Data collection
DiffractometerSTOE IPDS II two-circle-
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2003; Blessing, 1995)
Tmin, Tmax0.786, 0.797
No. of measured, independent and
observed [I > 2σ(I)] reflections
19919, 4113, 3704
Rint0.060
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.087, 1.07
No. of reflections4113
No. of parameters218
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.33

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.89 (2)1.97 (2)2.7007 (15)137.9 (18)
N2—H2···O1i0.89 (2)2.38 (2)3.1015 (16)137.8 (18)
N1—H1···S1ii0.852 (18)2.479 (19)3.3141 (12)166.7 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

MKR is grateful to the Higher Education Commission of Pakistan for financial support for the PhD program under scholarship No. ILC–0363104.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDarlington, A., Vishnevetskia, K. & Blake, T. T. (1996). Physiol. Plant. 97, 217–222.  CrossRef CAS Web of Science Google Scholar
First citationDowding, J. & Leeds, W. G. (1971). Ger. Patent 2 040 580.  Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2006a). Acta Cryst. E62, o1859–o1860.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2006b). Acta Cryst. E62, o2221–o2222.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2006c). Acta Cryst. E62, o2444–o2445.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Badshah, A., Bolte, M. & Ahmad, I. (2007). Acta Cryst. E63, o1073–o1075.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSantrucek, M. & Krepelka, J. (1988). Drugs Fut. 13, 974–996.  Google Scholar
First citationSasse, K., Barden, R., Eue, L. & Hack, H. (1969). S. Afr. Patent 900 256.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTeruhisa, N., Naoo, I., Yoshisuke, K. & Saburo, K. (1972). Jpn Tokkyo Koho. 71, 9–214.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds