organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(1,3-benzo­thia­zol-2-yl)benzene

aDepartment of Light Chemical Engineering, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: kingwell2004@sina.com.cn

(Received 11 December 2008; accepted 14 December 2008; online 20 December 2008)

The title compound, C20H12N2S2, was prepared by the reaction of o-phthalic acid and 2-amino­thio­phenol under microwave irradation. The phenyl ring, A, and the benzothia­zolyl rings, B and C, are planar; the dihedral angles are A/B = 19.9 (11), A/C = 87.8 (3) and B/C = 84.4 (4)°. Weak inter­molecular C—H⋯N hydrogen bonds link the mol­ecule, forming zigzag chains parallel to the c axis.

Related literature

For details of the synthesis and applications of benzothia­zoles, see: Chakraborti et al. (2004[Chakraborti, A. K., Selvam, C., Kaur, G. & Bhagat, S. (2004). Synlett, pp. 851-855.]); Seijas et al. (2007[Seijas, J. A., Vazquez, T. M. P., Carballido, R. M. R., Crecente, C. J. & Romar, L. L. (2007). Synlett, pp. 313-317.]). For the use of microwave-assisted organic synthesis, see: Kappe & Stadler (2005[Kappe, C. O. & Stadler, A. (2005). In Microwaves in Organic and Medicinal Chemistry. Weinheim: Wiley-VCH.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H12N2S2

  • Mr = 344.44

  • Monoclinic, P 21 /c

  • a = 10.748 (2) Å

  • b = 19.148 (4) Å

  • c = 8.1840 (16) Å

  • β = 100.77 (3)°

  • V = 1654.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.909, Tmax = 0.968

  • 3000 measured reflections

  • 3000 independent reflections

  • 1640 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 9%

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.206

  • S = 1.10

  • 3000 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N2i 0.93 2.46 3.370 (7) 165
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzothiazole are remarkable heterocyclic ring systems. They have been found to exhibit a wide spectrum of biological activities. They have shown antitumor,antimalarial,and fungicide activity. They are also an important class of industrial chemicals. Many kinds of 2-substituted benzothiazoles are utilized as vulcanization accelators in the manufacture of rubber,as fluorescent brightening agents in textile dyeing,and in the leather industry (Chakraborti et al.,2004; Seijas et al.,2007). There are numerous synthetic methods to produce 2-arylbenzothiazoles. The most important ones include the reaction of o-aminothiophenols with benzoic acids or their derivatives (Chakraborti et al.,2004; Seijas et al.,2007). Microwave-assisted organic synthesis (MAOS) is a powerful technique that is being used more and more to accelerate thermal organic reactions (Kappe & Stadler, 2005). We are focusing on Microwave-assisted synthesis of new products of bisbenzothiazole. We here report the crystal structure of the title compound (I).

The phenyl ring A (C8/C9/C13), benzothiazolyl ring B(C1/C2/C6/C7) and benzothiazolyl ring C(C14/C15/C20) are planar (Fig. 1). The dihedral angles between them are A/B = 19.9°, A/C = 87.8°, B/C = 84.4°, respectively. All bond lengths are within normal ranges (Allen et al., 1987). There are weak intermolecular C—H···N hydrogen bonds whick link the molecule forming zig-zag chains parallel to the c axis .(Table 1, Fig.2).

Related literature top

For details of the synthesis and applications of benzothiazoles, see: Chakraborti et al. (2004); Seijas et al. (2007). For the use of microwave-assisted organic synthesis, see: Kappe & Stadler (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 2-aminothiophenol (2.5 g, 20 mmol), 5 ml orthophosphoric acid, 5 g polyphosphoric acid and o-phthalic acid (1.66 g, 10 mmol) in a beakerflask (150 ml) was placed in a domestic microwave oven (0.8 KW, 2450 MHz) and irradiated (micromode, full power) for 4 min(30 s per time). The reaction mixture was cooled to r.t. and washed with aq NaOH (20%, 150 ml), The pH was adjusted to 10, the resulted solide was filtered. Then the crude compound(I) was obtained. It was crystallized from ethanol. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of methanol. 1H NMR (DMSO, δ, p.p.m.) 7.35–7.40 (m, 2 H), 7.46–7.51 (m, 2 H), 7.64 (dd,2 H), 7.81 (d, 2 H), 7.95 (dd,2 H), 8.05 (d,2 H).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.96 and 0.97 Å for methyl and methylene H atoms, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and x = 1.2 for methylene H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with the atom-numbering scheme. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view of (I) showing the C-H···N hydrogen bonds shown as dashed lines. [Symmetry code: (i) x, -y+1/2, z-1/2 ]
1,2-Bis(1,3-benzothiazol-2-yl)benzene top
Crystal data top
C20H12N2S2F(000) = 712
Mr = 344.44Dx = 1.383 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 27 reflections
a = 10.748 (2) Åθ = 1–25°
b = 19.148 (4) ŵ = 0.32 mm1
c = 8.1840 (16) ÅT = 293 K
β = 100.77 (3)°Block, yellow
V = 1654.6 (6) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1640 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.3°, θmin = 1.9°
ω/2θ scansh = 1212
Absorption correction: ψ scan
(North et al., 1968)
k = 022
Tmin = 0.909, Tmax = 0.968l = 09
3000 measured reflections3 standard reflections every 200 reflections
3000 independent reflections intensity decay: 9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.206H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0773P)2 + 1.3256P]
where P = (Fo2 + 2Fc2)/3
3000 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C20H12N2S2V = 1654.6 (6) Å3
Mr = 344.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.748 (2) ŵ = 0.32 mm1
b = 19.148 (4) ÅT = 293 K
c = 8.1840 (16) Å0.30 × 0.20 × 0.10 mm
β = 100.77 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1640 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.909, Tmax = 0.9683 standard reflections every 200 reflections
3000 measured reflections intensity decay: 9%
3000 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.206H-atom parameters constrained
S = 1.10Δρmax = 0.31 e Å3
3000 reflectionsΔρmin = 0.32 e Å3
217 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1724 (9)0.5336 (4)0.9897 (12)0.108 (3)
H10.12020.56301.03760.130*
C20.1344 (7)0.5137 (4)0.8270 (9)0.096 (2)
H20.05830.52910.76400.116*
C30.2149 (6)0.4693 (3)0.7600 (7)0.0610 (15)
C40.3256 (5)0.4465 (3)0.8557 (6)0.0524 (13)
C50.3633 (6)0.4661 (3)1.0209 (7)0.0664 (16)
H50.43760.44961.08620.080*
C60.2832 (8)0.5121 (4)1.0827 (9)0.085 (2)
H60.30640.52841.19110.102*
C70.2792 (4)0.4036 (3)0.5708 (6)0.0456 (12)
C80.2677 (5)0.3692 (3)0.4050 (6)0.0457 (12)
C90.1489 (5)0.3646 (3)0.3069 (7)0.0586 (15)
H90.08000.38350.34530.070*
C100.1297 (6)0.3325 (3)0.1532 (8)0.0712 (18)
H100.04850.33000.08970.085*
C110.2287 (6)0.3044 (3)0.0938 (8)0.0702 (17)
H110.21590.28320.01020.084*
C120.3461 (6)0.3079 (3)0.1882 (8)0.0664 (16)
H120.41330.28880.14640.080*
C130.3715 (5)0.3394 (3)0.3479 (6)0.0474 (12)
C140.5036 (5)0.3402 (3)0.4373 (6)0.0486 (13)
C150.6821 (5)0.3021 (3)0.5897 (6)0.0478 (13)
C160.7649 (6)0.2577 (3)0.6947 (8)0.0701 (17)
H160.73660.21530.72970.084*
C170.8887 (6)0.2782 (4)0.7449 (8)0.0744 (18)
H170.94470.24980.81570.089*
C180.9307 (6)0.3412 (4)0.6907 (7)0.0682 (17)
H181.01550.35320.72400.082*
C190.8532 (5)0.3858 (3)0.5915 (7)0.0590 (15)
H190.88350.42800.55830.071*
C200.7256 (4)0.3666 (3)0.5396 (6)0.0470 (12)
N10.1893 (4)0.4454 (2)0.5978 (5)0.0545 (12)
N20.5565 (4)0.2888 (2)0.5286 (5)0.0538 (11)
S10.40034 (14)0.39075 (8)0.73836 (18)0.0629 (5)
S20.60337 (13)0.40998 (7)0.41671 (19)0.0594 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.126 (7)0.104 (7)0.109 (7)0.032 (6)0.056 (6)0.017 (5)
C20.102 (6)0.112 (6)0.083 (5)0.036 (5)0.038 (4)0.013 (5)
C30.071 (4)0.061 (4)0.058 (4)0.003 (3)0.029 (3)0.004 (3)
C40.058 (3)0.054 (3)0.048 (3)0.007 (3)0.017 (3)0.000 (3)
C50.077 (4)0.075 (4)0.048 (3)0.020 (3)0.014 (3)0.005 (3)
C60.114 (6)0.085 (5)0.067 (4)0.017 (5)0.048 (4)0.024 (4)
C70.038 (3)0.048 (3)0.051 (3)0.001 (2)0.010 (2)0.008 (2)
C80.049 (3)0.041 (3)0.050 (3)0.003 (2)0.016 (2)0.005 (2)
C90.047 (3)0.073 (4)0.055 (4)0.002 (3)0.010 (3)0.006 (3)
C100.057 (4)0.083 (5)0.069 (4)0.000 (3)0.001 (3)0.005 (4)
C110.079 (4)0.068 (4)0.061 (4)0.002 (4)0.007 (3)0.013 (3)
C120.072 (4)0.060 (4)0.071 (4)0.007 (3)0.023 (3)0.010 (3)
C130.050 (3)0.042 (3)0.053 (3)0.000 (2)0.017 (2)0.003 (2)
C140.049 (3)0.051 (3)0.052 (3)0.007 (2)0.026 (2)0.004 (3)
C150.047 (3)0.055 (3)0.045 (3)0.013 (2)0.019 (2)0.009 (2)
C160.076 (4)0.069 (4)0.072 (4)0.015 (3)0.030 (3)0.023 (3)
C170.075 (4)0.082 (5)0.069 (4)0.022 (4)0.021 (4)0.013 (4)
C180.056 (3)0.094 (5)0.055 (4)0.007 (3)0.011 (3)0.010 (4)
C190.059 (3)0.065 (4)0.055 (3)0.003 (3)0.016 (3)0.005 (3)
C200.043 (3)0.056 (3)0.045 (3)0.006 (2)0.015 (2)0.005 (2)
N10.045 (2)0.062 (3)0.057 (3)0.015 (2)0.012 (2)0.000 (2)
N20.053 (3)0.054 (3)0.058 (3)0.002 (2)0.021 (2)0.002 (2)
S10.0625 (9)0.0730 (11)0.0537 (9)0.0142 (8)0.0116 (7)0.0059 (8)
S20.0572 (9)0.0493 (8)0.0699 (10)0.0033 (7)0.0072 (7)0.0119 (7)
Geometric parameters (Å, º) top
C1—C61.352 (10)C10—H100.9300
C1—C21.372 (10)C11—C121.352 (8)
C1—H10.9300C11—H110.9300
C2—C31.395 (8)C12—C131.418 (7)
C2—H20.9300C12—H120.9300
C3—C41.369 (7)C13—C141.471 (7)
C3—N11.383 (7)C14—N21.301 (6)
C4—C51.389 (7)C14—S21.740 (5)
C4—S11.730 (5)C15—N21.373 (6)
C5—C61.391 (9)C15—C161.402 (7)
C5—H50.9300C15—C201.409 (7)
C6—H60.9300C16—C171.374 (8)
C7—N11.305 (6)C16—H160.9300
C7—C81.492 (7)C17—C181.390 (9)
C7—S11.723 (5)C17—H170.9300
C8—C91.379 (7)C18—C191.352 (8)
C8—C131.409 (7)C18—H180.9300
C9—C101.381 (8)C19—C201.407 (7)
C9—H90.9300C19—H190.9300
C10—C111.360 (8)C20—S21.712 (5)
C6—C1—C2122.1 (7)C10—C11—H11120.5
C6—C1—H1118.9C11—C12—C13123.1 (6)
C2—C1—H1118.9C11—C12—H12118.4
C1—C2—C3117.2 (7)C13—C12—H12118.4
C1—C2—H2121.4C8—C13—C12116.7 (5)
C3—C2—H2121.4C8—C13—C14125.5 (5)
C4—C3—N1116.0 (5)C12—C13—C14117.8 (5)
C4—C3—C2120.4 (6)N2—C14—C13123.7 (5)
N1—C3—C2123.6 (6)N2—C14—S2115.2 (4)
C3—C4—C5122.3 (6)C13—C14—S2121.0 (4)
C3—C4—S1108.9 (4)N2—C15—C16125.4 (5)
C5—C4—S1128.8 (5)N2—C15—C20114.4 (4)
C4—C5—C6115.9 (6)C16—C15—C20120.2 (5)
C4—C5—H5122.0C17—C16—C15118.5 (6)
C6—C5—H5122.0C17—C16—H16120.7
C1—C6—C5121.9 (7)C15—C16—H16120.7
C1—C6—H6119.0C16—C17—C18120.5 (6)
C5—C6—H6119.0C16—C17—H17119.8
N1—C7—C8119.1 (4)C18—C17—H17119.8
N1—C7—S1115.2 (4)C19—C18—C17122.6 (6)
C8—C7—S1125.6 (4)C19—C18—H18118.7
C9—C8—C13119.0 (5)C17—C18—H18118.7
C9—C8—C7117.9 (4)C18—C19—C20118.2 (6)
C13—C8—C7123.0 (4)C18—C19—H19120.9
C8—C9—C10121.6 (5)C20—C19—H19120.9
C8—C9—H9119.2C19—C20—C15119.9 (5)
C10—C9—H9119.2C19—C20—S2130.4 (4)
C11—C10—C9120.5 (6)C15—C20—S2109.7 (4)
C11—C10—H10119.7C7—N1—C3110.2 (4)
C9—C10—H10119.7C14—N2—C15111.4 (4)
C12—C11—C10119.0 (6)C7—S1—C489.6 (3)
C12—C11—H11120.5C20—S2—C1489.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N2i0.932.463.370 (7)165
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H12N2S2
Mr344.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.748 (2), 19.148 (4), 8.1840 (16)
β (°) 100.77 (3)
V3)1654.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.909, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
3000, 3000, 1640
Rint0.000
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.206, 1.10
No. of reflections3000
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.32

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N2i0.932.463.370 (7)165.2
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChakraborti, A. K., Selvam, C., Kaur, G. & Bhagat, S. (2004). Synlett, pp. 851–855.  Web of Science CrossRef Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKappe, C. O. & Stadler, A. (2005). In Microwaves in Organic and Medicinal Chemistry. Weinheim: Wiley-VCH.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSeijas, J. A., Vazquez, T. M. P., Carballido, R. M. R., Crecente, C. J. & Romar, L. L. (2007). Synlett, pp. 313–317.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds