metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[aqua­(1,10-phenanthroline)cadmium(II)]-μ-benzene-1,4-di­carboxyl­ato]

aCollege of Science, North University of China, Taiyuan, Shanxi. 030051, People's Republic of China
*Correspondence e-mail: huhongping@nuc.edu.cn

(Received 11 November 2008; accepted 10 December 2008; online 17 December 2008)

The title compound, [Cd(C8H4O4)(C12H8N2)(H2O)]n, is a new coordination polymer of benzene-1,4-dicarboxyl­ate with cadmium(II) and 1,10-phenanthroline. The CdII ion is coordinated by two N atoms from the 1,10-phenanthroline mol­ecule, three O atoms from two crystallographically independent benzene-1,4-dicarboxyl­ate ligands and the O atom of a coordinated water mol­ecule, forming a heavily distorted octa­hedron. The 1,10-phenanthroline ligand is approximately planar within 0.073 (4) Å. The two different benzene-1,4-dicarboxyl­ate ligands each coordinate to two CdII ions in bidentate and monodentate modes, forming an infinite zigzag chain. Adjacent chains are packed tightly by strong ππ inter­actions [centroid–centroid distances = 3.851 (2) and 3.859 (2) Å] between the aromatic rings of the benzene-1,4-dicarboxyl­ate ligand and the 1,10-phenanthroline of a neighboring chain, forming a sheet parallel to (011). Different sheets are linked together via O—H⋯O hydrogen bonds between the coordinated water mol­ecules and the O atoms of the carboxyl­ate groups, forming a three-dimensional network.

Related literature

For related literature, see: Go et al. (2004[Go, Y., Wang, X., Anokhina, E. V. & Jacobson, A. J. (2004). Inorg. Chem. 43, 5360-5367.]); Sun et al. (2001[Sun, D., Cao, R., Liang, Y., Shi, Q., Su, W. & Hong, M. (2001). J. Chem. Soc. Dalton Trans. pp. 2335-2340.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H4O4)(C12H8N2)(H2O)]

  • Mr = 474.74

  • Triclinic, [P \overline 1]

  • a = 9.1831 (5) Å

  • b = 9.6550 (6) Å

  • c = 11.3600 (7) Å

  • α = 104.6310 (8)°

  • β = 104.0390 (9)°

  • γ = 101.8920 (7)°

  • V = 906.28 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 298 (2) K

  • 0.10 × 0.08 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.888, Tmax = 0.952

  • 5387 measured reflections

  • 3939 independent reflections

  • 3428 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.081

  • S = 1.07

  • 3939 reflections

  • 261 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O1i 0.81 (4) 1.91 (4) 2.697 (4) 163 (4)
O5—H5B⋯O4ii 0.75 (4) 2.07 (4) 2.782 (4) 159 (4)
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin,USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (I) was obtained by chance when the synthesis of its polymorph RAMJAQ (Sun et al., 2001) was repeated for a fluorescence study. A single-crystal suitable for X-ray diffraction of I was crystallized from an H2O-EtOH (1:1) solvent mixture at room temperature.

The CdII ion is coordinated by two N atoms from the 1,10-phenanthroline, three O atoms from two crystallographically independent benzene-1,4-dicarboxylate ligands, and one O atom of a water molecule (Fig. 1). The 1,10-phenanthroline ligand is approximately planar, the maximum deviation of the C10 atom from the mean plane being 0.073 (4) Å. The geometries of the two crystallographically independent benzene-1,4-dicarboxylate ligands in (I) are similar to those observed by Go et al. (2004). The two different benzene-1,4-dicarboxylate ligands each coordinate to two CdII ions in chelate bidentate and monodentate modes, respectively, forming an infinite zigzag chain. All the bond distances and bond angles in the ligand are comparable to those values in its polymorph (Sun et al., 2001). Adjacent chains are packed tightly by strong π-π interactions between the aromatic rings of the 1,10-phenanthroline and benzene-1,4-dicarboxylate ligands to form a sheet along the (011) direction. Strong π-π interactions between the aromatic rings are indicated by the short distance between C2 and C12 of 3.580 (6) Å. Different sheets are linked together though hydrogen bonds (Table 1) between coordinated the water molecules and O atoms of the carboxylate groups to form a three-dimensional network (Fig. 2).

Related literature top

For related literature, see: Go et al. (2004); Sun et al. (2001).

Experimental top

Cd(NO3)2.4H2O (0.5 mmol, 154 mg), benzene-1,4-dicarboxylate acid (0.5 mmol, 84 mg), and 1,10-phenanthroline (0.5 mmol 90 mg) were added into 30 ml of the mixed solvent water and EtOH (1:1). The mixture was stirred at room temperature for 30 minutes and the pH value was adjusted to 7 by 1M NaOH to get a clear solution. The solution was allowed to evaporate in the air. Plate crystals of the title compound were obtained after 2 days. The crystals were filtered, washed by cold MeOH and dried in air. Crystals of (I) suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Refinement top

H atoms bonded to atom O5 were located in a difference map and refined without any restraints. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 (2) Å, and Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 50% probability displacement ellipsoids. Atoms marked with A and B are at the symmetry positions of (1 - x, -y, 1 - z) and (2 - x, 1 - y, -z), respectively.
[Figure 2] Fig. 2. Packing diagram viewed down the b axis, The hydrogen bonds are indicated in dotted line.
catena-Poly[[aqua(1,10-phenanthroline)cadmium(II)]-µ-benzene-1,4- dicarboxylato] top
Crystal data top
[Cd(C8H4O4)(C12H8N2)(H2O)]Z = 2
Mr = 474.74F(000) = 472
Triclinic, P1Dx = 1.74 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1831 (5) ÅCell parameters from 2096 reflections
b = 9.6550 (6) Åθ = 2.6–26.7°
c = 11.3600 (7) ŵ = 1.24 mm1
α = 104.6310 (8)°T = 298 K
β = 104.0390 (9)°Plate, colourless
γ = 101.8920 (7)°0.10 × 0.08 × 0.04 mm
V = 906.28 (9) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3939 independent reflections
Radiation source: fine-focus sealed tube3428 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 811
Tmin = 0.888, Tmax = 0.952k = 1112
5387 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.2384P]
where P = (Fo2 + 2Fc2)/3
3939 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cd(C8H4O4)(C12H8N2)(H2O)]γ = 101.8920 (7)°
Mr = 474.74V = 906.28 (9) Å3
Triclinic, P1Z = 2
a = 9.1831 (5) ÅMo Kα radiation
b = 9.6550 (6) ŵ = 1.24 mm1
c = 11.3600 (7) ÅT = 298 K
α = 104.6310 (8)°0.10 × 0.08 × 0.04 mm
β = 104.0390 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3939 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3428 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.952Rint = 0.018
5387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.44 e Å3
3939 reflectionsΔρmin = 0.49 e Å3
261 parameters
Special details top

Experimental. all of H atoms on water molecules were located on intermediate difference Fourier map

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.95793 (3)0.18405 (3)0.35302 (2)0.02519 (9)
O11.0863 (3)0.0176 (3)0.3642 (3)0.0414 (6)
O21.2261 (3)0.2183 (3)0.4339 (3)0.0405 (6)
O30.9956 (3)0.2355 (3)0.1778 (2)0.0359 (6)
O41.0395 (3)0.4563 (3)0.3186 (2)0.0391 (6)
O50.9890 (4)0.2639 (4)0.5669 (3)0.0405 (7)
N10.7280 (3)0.2663 (3)0.3305 (3)0.0303 (6)
N20.7334 (3)0.0205 (3)0.2344 (3)0.0325 (7)
C11.2161 (4)0.0827 (4)0.4162 (3)0.0309 (8)
C21.3631 (4)0.0395 (4)0.4593 (3)0.0301 (7)
C31.4937 (4)0.1431 (4)0.5520 (4)0.0380 (9)
H31.49030.23990.58710.046*
C41.3706 (4)0.1043 (4)0.4069 (4)0.0374 (9)
H41.28380.17490.34390.045*
C51.0181 (4)0.3738 (4)0.2075 (3)0.0300 (7)
C61.0122 (4)0.4413 (4)0.1011 (3)0.0291 (7)
C71.0364 (5)0.3674 (4)0.0097 (3)0.0373 (9)
H71.06090.27750.01700.045*
C80.9751 (5)0.5750 (4)0.1105 (4)0.0398 (9)
H80.95800.62620.18470.048*
C90.7232 (5)0.4041 (4)0.3839 (4)0.0401 (9)
H90.81580.47530.43790.048*
C100.5850 (5)0.4462 (5)0.3622 (4)0.0499 (11)
H100.58590.54310.40270.060*
C110.4501 (5)0.3451 (5)0.2821 (4)0.0499 (11)
H110.35790.37280.26630.060*
C120.4487 (4)0.1981 (4)0.2224 (4)0.0362 (8)
C130.3116 (4)0.0852 (5)0.1363 (4)0.0475 (10)
H130.21740.10880.11610.057*
C140.3154 (4)0.0539 (5)0.0839 (4)0.0476 (10)
H140.22500.12470.02580.057*
C150.4574 (4)0.0949 (4)0.1162 (4)0.0418 (9)
C160.4649 (5)0.2426 (5)0.0711 (5)0.0592 (13)
H160.37580.31780.01620.071*
C170.6024 (6)0.2744 (5)0.1081 (6)0.0740 (17)
H170.60830.37160.07950.089*
C180.7343 (5)0.1603 (4)0.1893 (4)0.0507 (11)
H180.82820.18350.21310.061*
C190.5959 (4)0.0121 (4)0.1992 (3)0.0295 (7)
C200.5924 (4)0.1633 (4)0.2516 (3)0.0274 (7)
H5A0.958 (5)0.200 (4)0.596 (4)0.032 (11)*
H5B0.960 (5)0.327 (4)0.596 (4)0.035 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02248 (13)0.02768 (14)0.02752 (14)0.01040 (9)0.00638 (9)0.01107 (10)
O10.0258 (13)0.0428 (15)0.0577 (17)0.0128 (12)0.0060 (12)0.0240 (13)
O20.0316 (14)0.0378 (15)0.0560 (17)0.0191 (12)0.0097 (12)0.0180 (13)
O30.0457 (15)0.0339 (14)0.0333 (13)0.0135 (12)0.0120 (12)0.0178 (11)
O40.0536 (17)0.0383 (14)0.0279 (13)0.0153 (13)0.0120 (12)0.0136 (11)
O50.0595 (19)0.0346 (16)0.0337 (15)0.0177 (15)0.0206 (14)0.0124 (13)
N10.0245 (15)0.0288 (15)0.0336 (15)0.0099 (12)0.0050 (12)0.0054 (13)
N20.0275 (15)0.0264 (15)0.0388 (16)0.0091 (12)0.0055 (13)0.0058 (13)
C10.0243 (17)0.045 (2)0.0348 (18)0.0181 (16)0.0120 (15)0.0218 (16)
C20.0251 (17)0.0342 (19)0.0364 (19)0.0156 (15)0.0090 (15)0.0151 (15)
C30.0314 (19)0.0314 (19)0.049 (2)0.0189 (16)0.0052 (17)0.0081 (17)
C40.0283 (19)0.0334 (19)0.043 (2)0.0106 (16)0.0010 (16)0.0080 (16)
C50.0274 (17)0.0364 (19)0.0305 (18)0.0120 (15)0.0090 (14)0.0154 (15)
C60.0308 (18)0.0300 (18)0.0267 (17)0.0109 (15)0.0066 (14)0.0102 (14)
C70.056 (2)0.0310 (19)0.0315 (19)0.0223 (18)0.0147 (17)0.0124 (15)
C80.057 (3)0.041 (2)0.0315 (19)0.0259 (19)0.0199 (18)0.0137 (16)
C90.035 (2)0.0285 (19)0.050 (2)0.0104 (16)0.0091 (18)0.0039 (17)
C100.047 (2)0.034 (2)0.070 (3)0.0220 (19)0.019 (2)0.010 (2)
C110.035 (2)0.051 (3)0.069 (3)0.024 (2)0.015 (2)0.019 (2)
C120.0273 (18)0.040 (2)0.042 (2)0.0138 (16)0.0068 (16)0.0136 (17)
C130.0243 (19)0.059 (3)0.052 (2)0.0127 (19)0.0004 (18)0.017 (2)
C140.0206 (18)0.053 (3)0.049 (2)0.0023 (17)0.0048 (17)0.009 (2)
C150.032 (2)0.043 (2)0.041 (2)0.0043 (17)0.0055 (17)0.0069 (18)
C160.041 (2)0.040 (2)0.067 (3)0.002 (2)0.002 (2)0.005 (2)
C170.058 (3)0.030 (2)0.101 (4)0.011 (2)0.003 (3)0.008 (2)
C180.039 (2)0.034 (2)0.067 (3)0.0129 (18)0.004 (2)0.005 (2)
C190.0256 (17)0.0290 (18)0.0283 (17)0.0054 (14)0.0030 (14)0.0071 (14)
C200.0234 (16)0.0320 (18)0.0273 (17)0.0091 (14)0.0065 (13)0.0104 (14)
Geometric parameters (Å, º) top
Cd1—O32.256 (2)C6—C81.387 (5)
Cd1—O52.281 (3)C7—C8ii1.385 (5)
Cd1—O22.330 (2)C7—H70.9300
Cd1—N22.366 (3)C8—C7ii1.386 (5)
Cd1—N12.384 (3)C8—H80.9300
Cd1—O12.489 (2)C9—C101.396 (5)
O1—C11.265 (4)C9—H90.9300
O2—C11.253 (4)C10—C111.349 (6)
O3—C51.251 (4)C10—H100.9300
O4—C51.255 (4)C11—C121.406 (5)
O5—H5A0.81 (4)C11—H110.9300
O5—H5B0.75 (4)C12—C201.411 (5)
N1—C91.330 (4)C12—C131.424 (5)
N1—C201.357 (4)C13—C141.336 (6)
N2—C181.320 (5)C13—H130.9300
N2—C191.354 (4)C14—C151.430 (5)
C1—C21.501 (4)C14—H140.9300
C2—C31.382 (5)C15—C191.400 (5)
C2—C41.389 (5)C15—C161.410 (6)
C3—C4i1.382 (5)C16—C171.354 (6)
C3—H30.9300C16—H160.9300
C4—C3i1.382 (5)C17—C181.388 (6)
C4—H40.9300C17—H170.9300
C5—C61.507 (5)C18—H180.9300
C6—C71.374 (5)C19—C201.441 (5)
O3—Cd1—O5149.20 (11)C8—C6—C5120.8 (3)
O3—Cd1—O289.18 (9)C6—C7—C8ii121.0 (3)
O5—Cd1—O280.46 (10)C6—C7—H7119.5
O3—Cd1—N293.93 (10)C8ii—C7—H7119.5
O5—Cd1—N2113.58 (11)C7ii—C8—C6120.1 (3)
O2—Cd1—N2136.37 (9)C7ii—C8—H8119.9
O3—Cd1—N192.49 (10)C6—C8—H8119.9
O5—Cd1—N184.71 (10)N1—C9—C10122.7 (4)
O2—Cd1—N1153.45 (10)N1—C9—H9118.6
N2—Cd1—N169.96 (9)C10—C9—H9118.6
O3—Cd1—O1102.64 (9)C11—C10—C9119.5 (4)
O5—Cd1—O194.69 (10)C11—C10—H10120.3
O2—Cd1—O154.27 (9)C9—C10—H10120.3
N2—Cd1—O182.74 (9)C10—C11—C12120.2 (4)
N1—Cd1—O1149.65 (9)C10—C11—H11119.9
C1—O1—Cd188.0 (2)C12—C11—H11119.9
C1—O2—Cd195.7 (2)C11—C12—C20117.0 (3)
C5—O3—Cd1103.3 (2)C11—C12—C13123.6 (3)
Cd1—O5—H5A116 (3)C20—C12—C13119.4 (3)
Cd1—O5—H5B122 (3)C14—C13—C12121.4 (4)
H5A—O5—H5B104 (4)C14—C13—H13119.3
C9—N1—C20118.2 (3)C12—C13—H13119.3
C9—N1—Cd1125.8 (2)C13—C14—C15120.6 (4)
C20—N1—Cd1116.0 (2)C13—C14—H14119.7
C18—N2—C19117.8 (3)C15—C14—H14119.7
C18—N2—Cd1125.2 (3)C19—C15—C16116.9 (4)
C19—N2—Cd1116.6 (2)C19—C15—C14120.3 (4)
O2—C1—O1122.0 (3)C16—C15—C14122.8 (4)
O2—C1—C2118.5 (3)C17—C16—C15119.8 (4)
O1—C1—C2119.5 (3)C17—C16—H16120.1
C3—C2—C4118.9 (3)C15—C16—H16120.1
C3—C2—C1120.2 (3)C16—C17—C18119.2 (4)
C4—C2—C1120.9 (3)C16—C17—H17120.4
C2—C3—C4i120.7 (3)C18—C17—H17120.4
C2—C3—H3119.6N2—C18—C17123.4 (4)
C4i—C3—H3119.6N2—C18—H18118.3
C3i—C4—C2120.3 (3)C17—C18—H18118.3
C3i—C4—H4119.8N2—C19—C15122.9 (3)
C2—C4—H4119.8N2—C19—C20118.2 (3)
O3—C5—O4123.6 (3)C15—C19—C20118.9 (3)
O3—C5—C6117.0 (3)N1—C20—C12122.4 (3)
O4—C5—C6119.3 (3)N1—C20—C19118.2 (3)
C7—C6—C8118.9 (3)C12—C20—C19119.3 (3)
C7—C6—C5120.3 (3)
O3—Cd1—O1—C180.9 (2)Cd1—C1—C2—C37 (3)
O5—Cd1—O1—C173.5 (2)O2—C1—C2—C4158.3 (4)
O2—Cd1—O1—C11.20 (19)O1—C1—C2—C422.1 (5)
N2—Cd1—O1—C1173.3 (2)Cd1—C1—C2—C4173 (3)
N1—Cd1—O1—C1161.0 (2)C4—C2—C3—C4i0.6 (6)
O3—Cd1—O2—C1107.5 (2)C1—C2—C3—C4i179.6 (3)
O5—Cd1—O2—C1101.7 (2)C3—C2—C4—C3i0.6 (6)
N2—Cd1—O2—C112.6 (3)C1—C2—C4—C3i179.6 (3)
N1—Cd1—O2—C1158.6 (2)Cd1—O3—C5—O410.6 (4)
O1—Cd1—O2—C11.2 (2)Cd1—O3—C5—C6166.9 (2)
O5—Cd1—O3—C520.9 (3)O3—C5—C6—C722.1 (5)
O2—Cd1—O3—C590.5 (2)O4—C5—C6—C7160.3 (3)
N2—Cd1—O3—C5133.0 (2)O3—C5—C6—C8154.9 (4)
N1—Cd1—O3—C562.9 (2)O4—C5—C6—C822.7 (5)
O1—Cd1—O3—C5143.6 (2)C8—C6—C7—C8ii0.2 (7)
C1—Cd1—O3—C5116.4 (2)C5—C6—C7—C8ii177.3 (4)
O3—Cd1—N1—C991.3 (3)C7—C6—C8—C7ii0.2 (7)
O5—Cd1—N1—C957.9 (3)C5—C6—C8—C7ii177.2 (3)
O2—Cd1—N1—C91.8 (4)C20—N1—C9—C100.2 (6)
N2—Cd1—N1—C9175.4 (3)Cd1—N1—C9—C10177.2 (3)
O1—Cd1—N1—C9148.2 (3)N1—C9—C10—C111.3 (7)
C1—Cd1—N1—C984.5 (7)C9—C10—C11—C120.9 (7)
O3—Cd1—N1—C2085.8 (2)C10—C11—C12—C200.6 (6)
O5—Cd1—N1—C20125.0 (2)C10—C11—C12—C13179.7 (4)
O2—Cd1—N1—C20178.9 (2)C11—C12—C13—C14178.6 (4)
N2—Cd1—N1—C207.5 (2)C20—C12—C13—C141.0 (6)
O1—Cd1—N1—C2034.7 (3)C12—C13—C14—C152.0 (7)
C1—Cd1—N1—C2098.4 (6)C13—C14—C15—C192.7 (7)
O3—Cd1—N2—C1890.0 (3)C13—C14—C15—C16175.1 (5)
O5—Cd1—N2—C18104.2 (3)C19—C15—C16—C170.4 (7)
O2—Cd1—N2—C182.9 (4)C14—C15—C16—C17178.3 (5)
N1—Cd1—N2—C18178.7 (4)C15—C16—C17—C180.6 (9)
O1—Cd1—N2—C1812.2 (3)C19—N2—C18—C170.1 (7)
C1—Cd1—N2—C188.9 (4)Cd1—N2—C18—C17172.5 (4)
O3—Cd1—N2—C1982.7 (3)C16—C17—C18—N20.8 (9)
O5—Cd1—N2—C1983.1 (3)C18—N2—C19—C151.2 (6)
O2—Cd1—N2—C19175.6 (2)Cd1—N2—C19—C15172.1 (3)
N1—Cd1—N2—C198.6 (2)C18—N2—C19—C20177.8 (4)
O1—Cd1—N2—C19175.1 (3)Cd1—N2—C19—C209.0 (4)
C1—Cd1—N2—C19178.4 (2)C16—C15—C19—N21.3 (6)
Cd1—O2—C1—O12.3 (4)C14—C15—C19—N2179.2 (4)
Cd1—O2—C1—C2177.3 (3)C16—C15—C19—C20177.6 (4)
Cd1—O1—C1—O22.1 (3)C14—C15—C19—C200.3 (6)
Cd1—O1—C1—C2177.5 (3)C9—N1—C20—C121.5 (5)
O3—Cd1—C1—O274.0 (2)Cd1—N1—C20—C12175.9 (3)
O5—Cd1—C1—O275.3 (2)C9—N1—C20—C19176.7 (3)
N2—Cd1—C1—O2170.8 (2)Cd1—N1—C20—C196.0 (4)
N1—Cd1—C1—O2101.9 (6)C11—C12—C20—N11.9 (5)
O1—Cd1—C1—O2177.8 (3)C13—C12—C20—N1178.5 (3)
O3—Cd1—C1—O1103.9 (2)C11—C12—C20—C19176.3 (3)
O5—Cd1—C1—O1106.8 (2)C13—C12—C20—C193.4 (5)
O2—Cd1—C1—O1177.8 (3)N2—C19—C20—N11.9 (5)
N2—Cd1—C1—O17.1 (2)C15—C19—C20—N1179.1 (3)
N1—Cd1—C1—O180.3 (6)N2—C19—C20—C12176.3 (3)
O2—C1—C2—C321.6 (5)C15—C19—C20—C122.7 (5)
O1—C1—C2—C3158.0 (4)
Symmetry codes: (i) x+3, y, z+1; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1iii0.81 (4)1.91 (4)2.697 (4)163 (4)
O5—H5B···O4iv0.75 (4)2.07 (4)2.782 (4)159 (4)
Symmetry codes: (iii) x+2, y, z+1; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C8H4O4)(C12H8N2)(H2O)]
Mr474.74
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.1831 (5), 9.6550 (6), 11.3600 (7)
α, β, γ (°)104.6310 (8), 104.0390 (9), 101.8920 (7)
V3)906.28 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.10 × 0.08 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.888, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
5387, 3939, 3428
Rint0.018
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 1.07
No. of reflections3939
No. of parameters261
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.49

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1i0.81 (4)1.91 (4)2.697 (4)163 (4)
O5—H5B···O4ii0.75 (4)2.07 (4)2.782 (4)159 (4)
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z+1.
 

References

First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationGo, Y., Wang, X., Anokhina, E. V. & Jacobson, A. J. (2004). Inorg. Chem. 43, 5360–5367.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D., Cao, R., Liang, Y., Shi, Q., Su, W. & Hong, M. (2001). J. Chem. Soc. Dalton Trans. pp. 2335–2340.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds