metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyridine-κ2N,N′)iodido(piperidine-1-carbodi­thio­ato-κ2S,S′)copper(II)

aInstitute of Materials Physical Chemistry and The Key Laboratory for Functional Materials of Fujian Higher Education, Huaqiao University, Quanzhou, Fujian 362021, People's Republic of China
*Correspondence e-mail: lqfan@hqu.edu.cn

(Received 14 November 2008; accepted 27 November 2008; online 3 December 2008)

In the title compound, [Cu(C6H10NS2)I(C10H8N2)], the CuII ion is coordinated by one iodide ion, two N atoms of the bipyridine ligand and two S atoms from the piperidine­carbodithio­ate ligand in a distorted square-pyramidal environment. ππ stacking inter­actions, with centroid–centroid distances of 3.643 (4) Å, between pyridyl rings of the bipyridyl ligands of neighbouring mol­ecules lead to chains propagating parallel to the a axis.

Related literature

For background to transition metal complexes, see: Engelhardt et al. (1988[Engelhardt, L. M., Healy, P. C., Shephard, R. M., Skelton, B. W. & White, A. H. (1988). Inorg. Chem. 27, 2371-2373.]); Fernández et al. (2000[Fernández, E. J., López-de-Luzuriaga, J. M., Monge, M., Olmos, E., Laguna, A., Villacampa, M. D. & Jones, P. G. (2000). J. Cluster Sci. 11, 153-167.]); Koh et al. (2003[Koh, Y. W., Lai, C. S., Du, A. Y., Tiekink, E. R. T. & Loh, K. P. (2003). Chem. Mater. 15, 4544-4554.]); Noro et al. (2000[Noro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081-2084.]); Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C6H10NS2)I(C10H8N2)]

  • Mr = 506.89

  • Monoclinic, P 21 /c

  • a = 6.532 (3) Å

  • b = 16.859 (7) Å

  • c = 17.578 (7) Å

  • β = 108.047 (14)°

  • V = 1840.5 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.09 mm−1

  • T = 293 (2) K

  • 0.45 × 0.08 × 0.05 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Akishima, Tokyo, Japan.]) Tmin = 0.751, Tmax = 1.000 (expected range = 0.643–0.857)

  • 13746 measured reflections

  • 3946 independent reflections

  • 3389 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.108

  • S = 1.08

  • 3946 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Akishima, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Research into transition metal complexes has been rapidly expanding because of their fascinating structural diversity, as well as their potential applications as functional materials and enzymes (Noro et al., 2000; Yaghi et al., 1998). Dialkyldithiocarbamate anions, which are typical sulfur ligands, acting as monodentate, bidentate or bridging ligands, are often chosen for the preparation of complexes with a considerable structural variety (Engelhardt et al., 1988; Fernández et al., 2000; Koh et al., 2003). I report here the crystal structure of the title copper(II) complex, (I), containing a piperidyldithiocarbamate ligand.

The crystal structure of (I) is built of discrete molecules of the CuII complex (Fig. 1). The CuII ion is five-coordinated in a distorted square-pyramidal environment by one I atom in the apical position, two N atoms from the bipyridine ligand and two S atoms from the piperidyldithiocarbamate ligand in the basal plane (Table 1).

There is a π-π stacking interaction between the pyridyl rings R1 [N(2)/C(7)–C(11)] and R2 [N3/C(12)–C(16)] with a centroid-to-centroid distance of 3.643 (4) Å. These face-to-face interactions result in the complexes assembling into chains.

Related literature top

For background to transition metal complexes, see: Engelhardt et al. (1988); Fernández et al. (2000); Koh et al. (2003); Noro et al. (2000); Yaghi et al. (1998).

Experimental top

A mixture of Cu(Ac)2.H2O (0.08 g, 0.4 mmol), NaS2CNC5H10.2H2O (0.09 g, 0.4 mmol), 2,2'-bipyridine (0.06 g 0.4 mmol) and NaI.2H2O (0.07 g, 0.4 mmol) was stirred in DMF (15 ml). 2-PrOH was diffused into the resulting solution, yielding single crystals of (I).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) or 0.97 Å (piperidyl); Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme, with 30% probability displacement ellipsoids.
(2,2'-Bipyridine-κ2N,N')iodido(piperidine-1- carbodithioato-κ2S,S')copper(II) top
Crystal data top
[Cu(C6H10NS2)I(C10H8N2)]F(000) = 996
Mr = 506.89Dx = 1.829 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3988 reflections
a = 6.532 (3) Åθ = 3.3–27.5°
b = 16.859 (7) ŵ = 3.09 mm1
c = 17.578 (7) ÅT = 293 K
β = 108.047 (14)°Prism, black
V = 1840.5 (14) Å30.45 × 0.08 × 0.05 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
3946 independent reflections
Radiation source: Sealed Tube3389 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.036
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(CrystalClear; Rigaku,2000)
h = 86
Tmin = 0.751, Tmax = 1.000k = 2121
13746 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.043P)2 + 2.8277P]
where P = (Fo2 + 2Fc2)/3
3946 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Cu(C6H10NS2)I(C10H8N2)]V = 1840.5 (14) Å3
Mr = 506.89Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.532 (3) ŵ = 3.09 mm1
b = 16.859 (7) ÅT = 293 K
c = 17.578 (7) Å0.45 × 0.08 × 0.05 mm
β = 108.047 (14)°
Data collection top
Rigaku Mercury CCD
diffractometer
3946 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku,2000)
3389 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 1.000Rint = 0.036
13746 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.09Δρmax = 0.52 e Å3
3946 reflectionsΔρmin = 0.63 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.43714 (10)0.66212 (3)0.42086 (3)0.04099 (17)
I10.19321 (6)0.80141 (2)0.36188 (2)0.05420 (14)
S10.6396 (2)0.64039 (8)0.33518 (8)0.0502 (3)
S20.2619 (3)0.55763 (9)0.34096 (8)0.0586 (4)
N10.4731 (7)0.5184 (2)0.2378 (2)0.0423 (9)
N20.6611 (7)0.7232 (2)0.5076 (2)0.0401 (9)
N30.3271 (7)0.6421 (2)0.5154 (2)0.0420 (9)
C10.4607 (8)0.5651 (3)0.2965 (3)0.0386 (10)
C20.6306 (8)0.5319 (3)0.1943 (3)0.0496 (12)
H2A0.70440.48280.19070.059*
H2B0.73700.57060.22250.059*
C30.5104 (9)0.5620 (3)0.1113 (3)0.0556 (14)
H3A0.61060.56930.08110.067*
H3B0.44590.61300.11540.067*
C40.3347 (10)0.5035 (4)0.0674 (3)0.0620 (15)
H4A0.25300.52550.01600.074*
H4B0.40040.45440.05780.074*
C50.1852 (9)0.4865 (3)0.1159 (3)0.0533 (13)
H5A0.10570.53420.11940.064*
H5B0.08220.44610.08910.064*
C60.3075 (9)0.4585 (3)0.1993 (3)0.0499 (13)
H6A0.20940.45150.23040.060*
H6B0.37570.40790.19660.060*
C70.8254 (8)0.7641 (3)0.4972 (3)0.0464 (12)
H7A0.84060.76630.44640.056*
C80.9733 (9)0.8031 (3)0.5591 (3)0.0537 (13)
H8A1.08450.83230.55030.064*
C90.9520 (10)0.7979 (3)0.6347 (4)0.0615 (16)
H9A1.05150.82260.67770.074*
C100.7829 (9)0.7558 (3)0.6462 (3)0.0553 (14)
H10A0.76750.75190.69690.066*
C110.6367 (8)0.7197 (3)0.5814 (3)0.0430 (11)
C120.4453 (9)0.6746 (3)0.5851 (3)0.0417 (11)
C130.3853 (10)0.6676 (3)0.6542 (3)0.0528 (13)
H13A0.46620.69170.70160.063*
C140.2037 (10)0.6243 (3)0.6510 (3)0.0587 (15)
H14A0.16360.61730.69700.070*
C150.0828 (10)0.5918 (3)0.5800 (4)0.0614 (16)
H15A0.04170.56340.57690.074*
C160.1483 (9)0.6016 (3)0.5129 (3)0.0515 (13)
H16A0.06610.57940.46460.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0480 (4)0.0472 (3)0.0298 (3)0.0078 (3)0.0150 (3)0.0058 (2)
I10.0605 (3)0.0538 (2)0.0489 (2)0.00754 (16)0.01783 (18)0.01277 (15)
S10.0491 (8)0.0629 (8)0.0430 (6)0.0169 (6)0.0207 (6)0.0195 (6)
S20.0670 (10)0.0688 (8)0.0495 (7)0.0287 (7)0.0322 (7)0.0201 (6)
N10.043 (3)0.048 (2)0.0346 (19)0.0025 (18)0.0103 (18)0.0079 (16)
N20.043 (3)0.0428 (19)0.0308 (18)0.0023 (17)0.0068 (17)0.0013 (15)
N30.057 (3)0.0387 (19)0.0343 (19)0.0032 (18)0.0195 (18)0.0019 (15)
C10.044 (3)0.040 (2)0.031 (2)0.002 (2)0.011 (2)0.0012 (17)
C20.043 (3)0.062 (3)0.042 (3)0.001 (2)0.011 (2)0.017 (2)
C30.060 (4)0.066 (3)0.042 (3)0.010 (3)0.019 (3)0.003 (2)
C40.069 (4)0.070 (4)0.038 (3)0.011 (3)0.003 (3)0.004 (3)
C50.056 (4)0.045 (3)0.047 (3)0.010 (2)0.001 (3)0.001 (2)
C60.065 (4)0.040 (2)0.042 (3)0.012 (2)0.013 (2)0.007 (2)
C70.047 (3)0.048 (3)0.044 (3)0.005 (2)0.013 (2)0.002 (2)
C80.048 (3)0.048 (3)0.058 (3)0.002 (2)0.005 (3)0.008 (2)
C90.060 (4)0.053 (3)0.054 (3)0.001 (3)0.008 (3)0.019 (3)
C100.067 (4)0.052 (3)0.037 (3)0.012 (3)0.003 (3)0.007 (2)
C110.050 (3)0.044 (2)0.030 (2)0.014 (2)0.006 (2)0.0001 (18)
C120.058 (3)0.042 (2)0.027 (2)0.012 (2)0.016 (2)0.0019 (17)
C130.071 (4)0.054 (3)0.037 (3)0.017 (3)0.022 (3)0.010 (2)
C140.085 (5)0.058 (3)0.046 (3)0.021 (3)0.038 (3)0.013 (2)
C150.082 (4)0.046 (3)0.073 (4)0.007 (3)0.048 (3)0.006 (3)
C160.067 (4)0.045 (3)0.052 (3)0.004 (2)0.033 (3)0.004 (2)
Geometric parameters (Å, º) top
Cu1—N32.033 (4)C5—C61.510 (7)
Cu1—N22.035 (4)C5—H5A0.9700
Cu1—S12.3205 (15)C5—H5B0.9700
Cu1—S22.3218 (15)C6—H6A0.9700
Cu1—I12.8470 (11)C6—H6B0.9700
S1—C11.717 (5)C7—C81.379 (7)
S2—C11.716 (5)C7—H7A0.9300
N1—C11.320 (6)C8—C91.380 (8)
N1—C21.476 (6)C8—H8A0.9300
N1—C61.482 (6)C9—C101.379 (9)
N2—C71.335 (6)C9—H9A0.9300
N2—C111.357 (6)C10—C111.380 (7)
N3—C161.342 (6)C10—H10A0.9300
N3—C121.345 (6)C11—C121.481 (7)
C2—C31.514 (7)C12—C131.392 (6)
C2—H2A0.9700C13—C141.380 (8)
C2—H2B0.9700C13—H13A0.9300
C3—C41.529 (7)C14—C151.369 (8)
C3—H3A0.9700C14—H14A0.9300
C3—H3B0.9700C15—C161.384 (7)
C4—C51.511 (8)C15—H15A0.9300
C4—H4A0.9700C16—H16A0.9300
C4—H4B0.9700
N3—Cu1—N279.95 (16)C6—C5—C4111.5 (5)
N3—Cu1—S1157.11 (12)C6—C5—H5A109.3
N2—Cu1—S198.30 (12)C4—C5—H5A109.3
N3—Cu1—S297.80 (12)C6—C5—H5B109.3
N2—Cu1—S2160.43 (12)C4—C5—H5B109.3
S1—Cu1—S276.17 (5)H5A—C5—H5B108.0
N3—Cu1—I197.76 (11)N1—C6—C5108.8 (4)
N2—Cu1—I192.69 (11)N1—C6—H6A109.9
S1—Cu1—I1105.13 (5)C5—C6—H6A109.9
S2—Cu1—I1106.86 (6)N1—C6—H6B109.9
C1—S1—Cu185.37 (16)C5—C6—H6B109.9
C1—S2—Cu185.37 (16)H6A—C6—H6B108.3
C1—N1—C2122.3 (4)N2—C7—C8122.3 (5)
C1—N1—C6123.4 (4)N2—C7—H7A118.8
C2—N1—C6113.3 (4)C8—C7—H7A118.8
C7—N2—C11119.4 (4)C7—C8—C9118.3 (6)
C7—N2—Cu1125.5 (3)C7—C8—H8A120.8
C11—N2—Cu1115.1 (3)C9—C8—H8A120.8
C16—N3—C12119.0 (4)C10—C9—C8119.9 (5)
C16—N3—Cu1125.6 (3)C10—C9—H9A120.1
C12—N3—Cu1115.4 (3)C8—C9—H9A120.1
N1—C1—S2123.5 (4)C9—C10—C11119.2 (5)
N1—C1—S1123.5 (4)C9—C10—H10A120.4
S2—C1—S1113.1 (2)C11—C10—H10A120.4
N1—C2—C3108.3 (4)N2—C11—C10120.9 (5)
N1—C2—H2A110.0N2—C11—C12114.5 (4)
C3—C2—H2A110.0C10—C11—C12124.7 (5)
N1—C2—H2B110.0N3—C12—C13121.5 (5)
C3—C2—H2B110.0N3—C12—C11115.1 (4)
H2A—C2—H2B108.4C13—C12—C11123.4 (5)
C2—C3—C4110.8 (4)C14—C13—C12118.7 (5)
C2—C3—H3A109.5C14—C13—H13A120.6
C4—C3—H3A109.5C12—C13—H13A120.6
C2—C3—H3B109.5C15—C14—C13119.6 (5)
C4—C3—H3B109.5C15—C14—H14A120.2
H3A—C3—H3B108.1C13—C14—H14A120.2
C5—C4—C3110.6 (4)C14—C15—C16119.1 (6)
C5—C4—H4A109.5C14—C15—H15A120.4
C3—C4—H4A109.5C16—C15—H15A120.4
C5—C4—H4B109.5N3—C16—C15121.9 (5)
C3—C4—H4B109.5N3—C16—H16A119.1
H4A—C4—H4B108.1C15—C16—H16A119.1

Experimental details

Crystal data
Chemical formula[Cu(C6H10NS2)I(C10H8N2)]
Mr506.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.532 (3), 16.859 (7), 17.578 (7)
β (°) 108.047 (14)
V3)1840.5 (14)
Z4
Radiation typeMo Kα
µ (mm1)3.09
Crystal size (mm)0.45 × 0.08 × 0.05
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku,2000)
Tmin, Tmax0.751, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13746, 3946, 3389
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.108, 1.09
No. of reflections3946
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.63

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported financially by the Research Fund of Huaqiao University (No. 06BS216) and the Young Talent Fund of Fujian Province (No. 2007 F3060).

References

First citationEngelhardt, L. M., Healy, P. C., Shephard, R. M., Skelton, B. W. & White, A. H. (1988). Inorg. Chem. 27, 2371–2373.  CSD CrossRef CAS Web of Science Google Scholar
First citationFernández, E. J., López-de-Luzuriaga, J. M., Monge, M., Olmos, E., Laguna, A., Villacampa, M. D. & Jones, P. G. (2000). J. Cluster Sci. 11, 153–167.  Google Scholar
First citationKoh, Y. W., Lai, C. S., Du, A. Y., Tiekink, E. R. T. & Loh, K. P. (2003). Chem. Mater. 15, 4544–4554.  Web of Science CSD CrossRef CAS Google Scholar
First citationNoro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081–2084.  CrossRef Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Akishima, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds