organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o49-o50

Tetra­ethyl­ammonium L-malate 1.36-hydrate

aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 12 November 2008; accepted 1 December 2008; online 10 December 2008)

The asymmetric unit of the title compound, C8H20N+·C4H5O5·1.36H2O, contains two independent ion pairs, with similar conformations, and three water mol­ecules of crystallization, one water mol­ecule haing a site-occupancy factor of 0.721 (5). Intra­molecular O—H⋯O hydrogen bonds, involving the hydr­oxy groups and an O atom of each carboxyl­ate anion, generate five-membered rings involving S(5) ring motifs. In the crystal structure, mol­ecules are linked together by water mol­ecules through four-membered O—H⋯O—H⋯O—H inter­actions to form one-dimensional infinite chains along the a axis. Since the mol­ecules are also linked into one-dimensional infinite chains along the b axis, mol­ecular sheets parallel to the (001) plane are created. Overall, the crystal structure is stabilized by two intra­molecular O—H⋯O hydrogen bonds, nine inter­molecular O—H⋯O and ten C—H⋯O hydrogen bonds.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related compounds, see, for example: Rahman et al. (2008[Rahman, M. B. A., Jumbri, K., Sirat, K., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, o2343.]); Allen et al. (2006[Allen, C. R., Richard, P. L., Ward, A. J., van de Water, L. G. A., Masters, A. F. & Maschmeyer, T. (2006). Tetrahedron Lett. 47, 7367-7370.]); Jiang et al. (2008[Jiang, Y.-Y., Wang, G.-N., Zhou, Z., Wu, Y.-T., Geng, J. & Zhang, Z.-B. (2008). Chem. Commun. pp. 505-507.]). For related literature, see: Anandha et al. (2008[Anandha Babu, G., Bhagavannarayana, G. & Ramasamy, P. (2008). J. Cryst. Growth, 310, 1228-1238.]).

[Scheme 1]

Experimental

Crystal data
  • C8H20N+·C4H5O5·1.36H2O

  • Mr = 287.83

  • Monoclinic, P 21

  • a = 7.4724 (2) Å

  • b = 19.9721 (5) Å

  • c = 10.2726 (3) Å

  • β = 92.481 (1)°

  • V = 1531.64 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100.0 (1) K

  • 0.45 × 0.35 × 0.32 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.969

  • 36497 measured reflections

  • 8479 independent reflections

  • 7551 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.103

  • S = 1.03

  • 8479 reflections

  • 373 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1OA⋯O4Ai 0.82 1.68 2.4977 (11) 171
O3A—H3OA⋯O2W 0.82 1.98 2.7296 (14) 151
O3A—H3OA⋯O5A 0.82 2.27 2.6853 (11) 112
O3B—H3OB⋯O3W 0.82 2.00 2.7435 (13) 151
O3B—H3OB⋯O5B 0.82 2.26 2.6837 (12) 112
O1W—H1W1⋯O4Aii 0.92 2.03 2.9354 (17) 166
O1W—H2W1⋯O1Biii 0.92 1.90 2.8018 (18) 165
O2W—H1W2⋯O5B 0.84 1.99 2.7969 (13) 162
O2W—H2W2⋯O3Biv 0.72 2.18 2.8961 (13) 176
O3W—H2W3⋯O3A 0.80 (2) 2.13 (2) 2.9169 (13) 173 (2)
O3W—H1W3⋯O5Ai 0.89 (2) 1.94 (2) 2.7894 (12) 160 (2)
C2A—H2AB⋯O1Wv 0.97 2.44 3.3852 (18) 165
C5A—H5AA⋯O1Aii 0.97 2.41 3.2814 (15) 149
C6A—H6AA⋯O1Wi 0.96 2.59 3.296 (2) 131
C6A—H6AB⋯O2Wi 0.96 2.60 3.434 (2) 146
C7A—H7AA⋯O1W 0.97 2.42 3.2511 (18) 144
C11A—H11B⋯O2A 0.97 2.53 3.2884 (15) 135
C7A—H7AB⋯O4Biii 0.97 2.46 3.3796 (16) 158
C5B—H5BB⋯O4Avi 0.97 2.51 3.4141 (17) 156
C6B—H6BC⋯O1Wvii 0.96 2.58 3.350 (3) 137
C7B—H7BB⋯O2Biv 0.97 2.47 3.4325 (15) 170
Symmetry codes: (i) x+1, y, z; (ii) x, y, z-1; (iii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iv) x-1, y, z; (v) x, y, z+1; (vi) [-x, y+{\script{1\over 2}}, -z+1]; (vii) [-x, y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Previously, we have reported the formation of the tetraethylammonium L-tartarate crystal (Rahman et al., 2008). In this study, we used a different anion in order to compare the interaction between the tartarate and malate ions. Generally, organic molecules contain substituents with the ability to form inter- and intramolecular hydrogen bonding. In this work, tetraethylammonium L-malate [C2H5)4N]+[C4H5O5]-, was synthesized by neutralization reaction of tetraethylammonium hydroxide with L-malic acid. Related compounds containing the same anion have been prepared (Allen et al., 2006, Ying-Ying et al., 2007). Tetraethylammonium hydroxide is a strong base, which easily deprotonates the carboxylic acid moiety of L-malic acid to form carboxylate anion and water as a by-product (Allen et al., 2006). The reaction between tetraethylammonium hydroxide and L-malic acid forms a weak bond. It seems that the bond formed between tetraethylammonium and L-malic acid is weaker than a covalent bond but may still contribute to the achieved minimum energy configuration (Anandha et al., 2008).

In the title compound I, Fig. 1, the asymmetric unit is composed of two crystallographically independent ion pairs (A and B), with similar conformations and three water molecules of crystallization. One of the water molecule (O1W) is partially occupied with a site-occupancy factor of 0.721 (5). The bond lengths (Allen et al. 1987) and angles are within normal ranges. Intramolecular O3A—H3OA···O5A and O3B—H3OB···O5B hydrogen bonds form S(5) ring motifs (Table 1) (Bernstein et al., 1995). In the crystal structure, the molecules are linked together by water molecules through directed four-membered O—H···O—H···O—H interactions to form 1-D infinite chains along the a-axis (Fig. 2). Since the molecules are also linked into 1-D infinite chains along the b-axis, molecular sheets parallel to the (001)-plane are created (Fig. 2). The crystal structure is stabilized by intramolecular O—H···O (x 2) hydrogen bonds, intermolecular O—H···O (x 9) and C—H···O (x 10) hydrogen bonds (Table 1).

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For related compounds, see, for example: Rahman et al. (2008); Allen et al. (2006); Jiang et al. (2007). For related literature, see: Anandha et al. (2008).

Experimental top

The synthetic procedure is similar to the previous one (Abdul Rahman et al., 2008) except that L-malic acid (6.704 g, 0.05 mole) was used. Single crystals suitable for X-ray diffraction were obtained by slow evaporation at room temperature.

Refinement top

The H atoms bound to O1W and O2W were located from the difference Fourier map and constrained to ride on the parent atom. The hydrogen atoms of O3W were also located from the difference Fourier map and refined freely. The hydrogen of the hydroxy groups were positioned using a freely rotating O—H bond and constrained with a fixed disatnce of 0.82 Å. The rest of the hydrogen atoms were positioned geometrically and refined as a riding model. A rotating group model was used for the methyl group. One of the water molecule (O1W) is partially occupied with a site-occupancy factor of 0.721 (5). In the absence of significant anomalous dispersion effects, the Friedel pairs (6331) were averaged. Only the relative configuration is known. The highest peak (0.51 e. Å-3) is located 0.35 Å from H6BC and the deepest hole (-0.46 Å-3) is located 0.67 Å from O1W.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 40% probability ellipsoids for non-H atoms. The hydrogen atoms of the cations were omitted for clarity. Intramolecular interactions are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the c-axis showing infinite 1-D chains along the a and b-axes of the unit cell. Intermolecular interactions are shown as dashed lines.
Tetraethylammonium L-malate 1.36-hydrate top
Crystal data top
C8H20N+·C4H5O5·1.36H2OF(000) = 630
Mr = 287.83Dx = 1.248 Mg m3
Monoclinic, P21Melting point: 360 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 7.4724 (2) ÅCell parameters from 9898 reflections
b = 19.9721 (5) Åθ = 2.2–37.3°
c = 10.2726 (3) ŵ = 0.10 mm1
β = 92.481 (1)°T = 100 K
V = 1531.64 (7) Å3Block, colourless
Z = 40.45 × 0.35 × 0.32 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8479 independent reflections
Radiation source: fine-focus sealed tube7551 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 38.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.950, Tmax = 0.969k = 3429
36497 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0604P)2 + 0.0914P]
where P = (Fo2 + 2Fc2)/3
8479 reflections(Δ/σ)max = 0.001
373 parametersΔρmax = 0.51 e Å3
1 restraintΔρmin = 0.47 e Å3
Crystal data top
C8H20N+·C4H5O5·1.36H2OV = 1531.64 (7) Å3
Mr = 287.83Z = 4
Monoclinic, P21Mo Kα radiation
a = 7.4724 (2) ŵ = 0.10 mm1
b = 19.9721 (5) ÅT = 100 K
c = 10.2726 (3) Å0.45 × 0.35 × 0.32 mm
β = 92.481 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8479 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
7551 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.969Rint = 0.029
36497 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.51 e Å3
8479 reflectionsΔρmin = 0.47 e Å3
373 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.64573 (10)0.68458 (5)1.09523 (8)0.01788 (15)
H1OA0.74510.67301.07280.027*
O2A0.55148 (12)0.61775 (5)0.93035 (9)0.02041 (16)
O3A0.27550 (11)0.73628 (5)0.84168 (9)0.02079 (16)
H3OA0.19160.75100.79620.031*
O4A0.03849 (11)0.65649 (5)1.04627 (9)0.01975 (16)
O5A0.07483 (10)0.73468 (4)0.88984 (9)0.01767 (14)
N1A0.60300 (13)0.67357 (5)0.51749 (9)0.01637 (15)
C1A0.52222 (13)0.65830 (6)1.01586 (10)0.01443 (16)
C2A0.33579 (13)0.68207 (6)1.04454 (10)0.01670 (18)
H2AA0.34330.72631.08330.020*
H2AB0.28460.65211.10720.020*
C3A0.21347 (12)0.68474 (6)0.92261 (10)0.01460 (16)
H3AA0.22430.64210.87630.018*
C4A0.01667 (12)0.69397 (5)0.95518 (10)0.01428 (16)
C5A0.73206 (17)0.66565 (7)0.40899 (12)0.0230 (2)
H5AA0.66380.66330.32660.028*
H5AB0.79510.62350.42090.028*
C6A0.8688 (2)0.72149 (11)0.40131 (18)0.0421 (4)
H6AA0.95000.71150.33400.063*
H6AB0.93460.72530.48330.063*
H6AC0.80850.76290.38170.063*
C7A0.46547 (15)0.61822 (6)0.49843 (12)0.01862 (19)
H7AA0.40560.62370.41340.022*
H7AB0.52760.57560.49850.022*
C8A0.3248 (2)0.61578 (9)0.60028 (16)0.0308 (3)
H8AA0.23890.58150.57780.046*
H8AB0.26520.65830.60370.046*
H8AC0.38120.60600.68390.046*
C9A0.5129 (2)0.74197 (6)0.51372 (13)0.0238 (2)
H9AA0.43140.74450.58450.029*
H9AB0.60390.77600.52890.029*
C10A0.4094 (2)0.75780 (8)0.38697 (15)0.0307 (3)
H10A0.35760.80160.39220.046*
H10B0.31610.72530.37230.046*
H10C0.48920.75650.31620.046*
C11A0.70013 (17)0.66878 (6)0.65050 (11)0.01895 (19)
H11A0.78610.70510.65850.023*
H11B0.61350.67520.71710.023*
C12A0.79772 (18)0.60338 (7)0.67707 (12)0.0225 (2)
H12A0.84610.60310.76520.034*
H12B0.89330.59880.61820.034*
H12C0.71560.56670.66470.034*
O1B1.02736 (12)0.99945 (5)0.57343 (9)0.02120 (16)
O2B1.10569 (10)0.93091 (5)0.41324 (8)0.01761 (14)
H2OB1.20730.94160.43850.026*
O3B0.76722 (11)0.88088 (5)0.67077 (9)0.02200 (17)
H3OB0.68920.86630.71680.033*
O4B0.42411 (10)0.95514 (5)0.46248 (9)0.01896 (15)
O5B0.41095 (11)0.87999 (5)0.62477 (9)0.01882 (15)
N1B0.11875 (14)0.93897 (5)0.00228 (10)0.01887 (17)
C1B0.99015 (13)0.95720 (6)0.48948 (10)0.01417 (16)
C2B0.80012 (13)0.93187 (6)0.46378 (10)0.01577 (17)
H2BA0.80440.88700.42810.019*
H2BB0.73970.96040.39930.019*
C3B0.69307 (12)0.93078 (6)0.58625 (10)0.01484 (16)
H3BA0.70800.97420.62960.018*
C4B0.49200 (13)0.91967 (5)0.55639 (10)0.01426 (16)
C5B0.02184 (18)0.99158 (7)0.02759 (15)0.0264 (2)
H5BA0.05490.98770.11750.032*
H5BB0.03151.03540.01720.032*
C6B0.1902 (3)0.98789 (11)0.0588 (3)0.0523 (6)
H6BA0.27591.01970.02930.078*
H6BB0.23960.94360.05490.078*
H6BC0.16210.99800.14690.078*
C7B0.26558 (17)0.94955 (7)0.10709 (12)0.0215 (2)
H7BA0.31750.99350.09510.026*
H7BB0.21170.94930.19130.026*
C8B0.4142 (2)0.89834 (9)0.10931 (17)0.0337 (3)
H8BA0.50740.91170.17110.051*
H8BB0.46190.89510.02420.051*
H8BC0.36780.85560.13400.051*
C9B0.03916 (19)0.86912 (6)0.00799 (13)0.0232 (2)
H9BA0.05030.86460.06270.028*
H9BB0.13320.83690.00700.028*
C10B0.0468 (2)0.85122 (8)0.13452 (15)0.0305 (3)
H10D0.08430.80530.13170.046*
H10E0.14880.87950.14590.046*
H10F0.03850.85760.20610.046*
C11B0.18992 (19)0.94528 (6)0.13422 (12)0.0224 (2)
H11C0.27130.90830.14790.027*
H11D0.09010.94070.19720.027*
C12B0.28672 (18)1.01017 (7)0.16150 (13)0.0229 (2)
H12D0.31461.01180.25180.034*
H12E0.39551.01240.10840.034*
H12F0.21131.04740.14160.034*
O1W0.12929 (18)0.60364 (8)0.28868 (14)0.0250 (4)0.721 (5)
H1W10.05850.61710.21750.037*0.721 (5)
H2W10.09550.56980.34390.037*0.721 (5)
O2W0.09626 (12)0.80596 (5)0.64819 (10)0.02132 (16)
H1W20.17800.83220.62710.032*
H2W20.01710.82590.65570.032*
O3W0.61177 (12)0.81035 (5)0.86527 (9)0.01997 (16)
H2W30.521 (3)0.7902 (13)0.852 (2)0.035 (6)*
H1W30.695 (3)0.7793 (11)0.882 (2)0.025 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0113 (3)0.0259 (4)0.0164 (3)0.0009 (3)0.0000 (2)0.0004 (3)
O2A0.0190 (3)0.0241 (4)0.0180 (4)0.0048 (3)0.0005 (3)0.0020 (3)
O3A0.0122 (3)0.0276 (4)0.0226 (4)0.0015 (3)0.0004 (2)0.0107 (3)
O4A0.0126 (3)0.0249 (4)0.0219 (4)0.0003 (3)0.0021 (2)0.0073 (3)
O5A0.0131 (3)0.0198 (4)0.0199 (4)0.0003 (3)0.0010 (2)0.0014 (3)
N1A0.0214 (4)0.0148 (4)0.0126 (4)0.0008 (3)0.0025 (3)0.0010 (3)
C1A0.0128 (3)0.0178 (4)0.0126 (4)0.0006 (3)0.0002 (3)0.0041 (3)
C2A0.0118 (3)0.0243 (5)0.0140 (4)0.0007 (3)0.0003 (3)0.0003 (4)
C3A0.0105 (3)0.0188 (4)0.0144 (4)0.0002 (3)0.0004 (3)0.0012 (3)
C4A0.0109 (3)0.0161 (4)0.0158 (4)0.0020 (3)0.0002 (3)0.0015 (3)
C5A0.0242 (5)0.0301 (6)0.0149 (4)0.0030 (4)0.0019 (3)0.0016 (4)
C6A0.0367 (8)0.0565 (11)0.0334 (8)0.0218 (8)0.0063 (6)0.0035 (8)
C7A0.0206 (4)0.0170 (5)0.0181 (5)0.0019 (3)0.0010 (3)0.0033 (4)
C8A0.0261 (6)0.0350 (7)0.0320 (7)0.0060 (5)0.0072 (5)0.0040 (6)
C9A0.0357 (6)0.0156 (5)0.0194 (5)0.0034 (4)0.0079 (4)0.0012 (4)
C10A0.0425 (8)0.0240 (6)0.0242 (6)0.0068 (5)0.0126 (5)0.0001 (5)
C11A0.0268 (5)0.0171 (5)0.0125 (4)0.0009 (3)0.0044 (3)0.0010 (3)
C12A0.0267 (5)0.0221 (5)0.0183 (5)0.0044 (4)0.0045 (4)0.0001 (4)
O1B0.0184 (3)0.0239 (4)0.0214 (4)0.0047 (3)0.0029 (3)0.0072 (3)
O2B0.0115 (3)0.0249 (4)0.0165 (3)0.0017 (3)0.0019 (2)0.0030 (3)
O3B0.0127 (3)0.0291 (5)0.0244 (4)0.0010 (3)0.0026 (3)0.0111 (3)
O4B0.0120 (3)0.0229 (4)0.0219 (4)0.0011 (3)0.0002 (2)0.0063 (3)
O5B0.0144 (3)0.0203 (4)0.0219 (4)0.0018 (3)0.0037 (2)0.0042 (3)
N1B0.0236 (4)0.0164 (4)0.0166 (4)0.0034 (3)0.0015 (3)0.0052 (3)
C1B0.0129 (3)0.0169 (4)0.0128 (4)0.0018 (3)0.0012 (3)0.0017 (3)
C2B0.0121 (3)0.0202 (5)0.0151 (4)0.0029 (3)0.0021 (3)0.0013 (4)
C3B0.0108 (3)0.0179 (4)0.0160 (4)0.0000 (3)0.0015 (3)0.0014 (3)
C4B0.0125 (3)0.0144 (4)0.0160 (4)0.0002 (3)0.0024 (3)0.0017 (3)
C5B0.0233 (5)0.0215 (6)0.0342 (7)0.0000 (4)0.0009 (4)0.0083 (5)
C6B0.0329 (8)0.0401 (10)0.0819 (16)0.0063 (7)0.0226 (9)0.0168 (10)
C7B0.0243 (5)0.0253 (5)0.0150 (4)0.0036 (4)0.0010 (3)0.0036 (4)
C8B0.0309 (7)0.0379 (8)0.0318 (7)0.0054 (6)0.0033 (5)0.0003 (6)
C9B0.0333 (6)0.0172 (5)0.0195 (5)0.0076 (4)0.0046 (4)0.0051 (4)
C10B0.0391 (7)0.0288 (7)0.0243 (6)0.0134 (5)0.0080 (5)0.0060 (5)
C11B0.0346 (6)0.0185 (5)0.0143 (5)0.0048 (4)0.0018 (4)0.0028 (4)
C12B0.0278 (5)0.0203 (5)0.0206 (5)0.0057 (4)0.0026 (4)0.0012 (4)
O1W0.0206 (6)0.0304 (7)0.0235 (7)0.0050 (4)0.0031 (4)0.0084 (5)
O2W0.0170 (3)0.0205 (4)0.0265 (4)0.0009 (3)0.0011 (3)0.0063 (3)
O3W0.0168 (3)0.0201 (4)0.0231 (4)0.0002 (3)0.0020 (3)0.0046 (3)
Geometric parameters (Å, º) top
O1A—C1A1.3141 (13)O3B—C3B1.4187 (14)
O1A—H1OA0.8200O3B—H3OB0.8200
O2A—C1A1.2215 (14)O4B—C4B1.2835 (14)
O3A—C3A1.4140 (14)O5B—C4B1.2350 (14)
O3A—H3OA0.8200N1B—C5B1.5161 (17)
O4A—C4A1.2804 (13)N1B—C7B1.5184 (15)
O5A—C4A1.2407 (13)N1B—C9B1.5186 (16)
N1A—C5A1.5134 (16)N1B—C11B1.5262 (16)
N1A—C7A1.5162 (15)C1B—C2B1.5197 (14)
N1A—C11A1.5223 (14)C2B—C3B1.5200 (15)
N1A—C9A1.5228 (16)C2B—H2BA0.9700
C1A—C2A1.5127 (14)C2B—H2BB0.9700
C2A—C3A1.5193 (14)C3B—C4B1.5366 (13)
C2A—H2AA0.9700C3B—H3BA0.9800
C2A—H2AB0.9700C5B—C6B1.509 (2)
C3A—C4A1.5333 (13)C5B—H5BA0.9700
C3A—H3AA0.9800C5B—H5BB0.9700
C5A—C6A1.517 (2)C6B—H6BA0.9600
C5A—H5AA0.9700C6B—H6BB0.9600
C5A—H5AB0.9700C6B—H6BC0.9600
C6A—H6AA0.9600C7B—C8B1.509 (2)
C6A—H6AB0.9600C7B—H7BA0.9700
C6A—H6AC0.9600C7B—H7BB0.9700
C7A—C8A1.5158 (19)C8B—H8BA0.9600
C7A—H7AA0.9700C8B—H8BB0.9600
C7A—H7AB0.9700C8B—H8BC0.9600
C8A—H8AA0.9600C9B—C10B1.517 (2)
C8A—H8AB0.9600C9B—H9BA0.9700
C8A—H8AC0.9600C9B—H9BB0.9700
C9A—C10A1.5185 (18)C10B—H10D0.9600
C9A—H9AA0.9700C10B—H10E0.9600
C9A—H9AB0.9700C10B—H10F0.9600
C10A—H10A0.9600C11B—C12B1.5163 (18)
C10A—H10B0.9600C11B—H11C0.9700
C10A—H10C0.9600C11B—H11D0.9700
C11A—C12A1.5150 (17)C12B—H12D0.9600
C11A—H11A0.9700C12B—H12E0.9600
C11A—H11B0.9700C12B—H12F0.9600
C12A—H12A0.9600O1W—H1W10.9230
C12A—H12B0.9600O1W—H2W10.9242
C12A—H12C0.9600O2W—H1W20.8398
O1B—C1B1.2297 (14)O2W—H2W20.7201
O2B—C1B1.3011 (13)O3W—H2W30.80 (3)
O2B—H2OB0.8200O3W—H1W30.89 (2)
C1A—O1A—H1OA109.5C5B—N1B—C7B105.47 (9)
C3A—O3A—H3OA109.5C5B—N1B—C9B110.76 (10)
C5A—N1A—C7A106.18 (9)C7B—N1B—C9B111.87 (10)
C5A—N1A—C11A111.11 (9)C5B—N1B—C11B111.84 (11)
C7A—N1A—C11A111.36 (9)C7B—N1B—C11B111.72 (10)
C5A—N1A—C9A111.72 (10)C9B—N1B—C11B105.31 (9)
C7A—N1A—C9A110.76 (9)O1B—C1B—O2B124.28 (9)
C11A—N1A—C9A105.80 (9)O1B—C1B—C2B122.10 (10)
O2A—C1A—O1A124.62 (10)O2B—C1B—C2B113.61 (9)
O2A—C1A—C2A122.90 (9)C1B—C2B—C3B112.47 (8)
O1A—C1A—C2A112.45 (9)C1B—C2B—H2BA109.1
C1A—C2A—C3A112.13 (9)C3B—C2B—H2BA109.1
C1A—C2A—H2AA109.2C1B—C2B—H2BB109.1
C3A—C2A—H2AA109.2C3B—C2B—H2BB109.1
C1A—C2A—H2AB109.2H2BA—C2B—H2BB107.8
C3A—C2A—H2AB109.2O3B—C3B—C2B108.12 (9)
H2AA—C2A—H2AB107.9O3B—C3B—C4B111.92 (9)
O3A—C3A—C2A108.03 (9)C2B—C3B—C4B112.45 (8)
O3A—C3A—C4A112.50 (9)O3B—C3B—H3BA108.1
C2A—C3A—C4A111.89 (8)C2B—C3B—H3BA108.1
O3A—C3A—H3AA108.1C4B—C3B—H3BA108.1
C2A—C3A—H3AA108.1O5B—C4B—O4B126.45 (9)
C4A—C3A—H3AA108.1O5B—C4B—C3B118.59 (9)
O5A—C4A—O4A126.25 (9)O4B—C4B—C3B114.93 (9)
O5A—C4A—C3A118.17 (9)C6B—C5B—N1B115.56 (13)
O4A—C4A—C3A115.55 (9)C6B—C5B—H5BA108.4
N1A—C5A—C6A114.44 (12)N1B—C5B—H5BA108.4
N1A—C5A—H5AA108.7C6B—C5B—H5BB108.4
C6A—C5A—H5AA108.7N1B—C5B—H5BB108.4
N1A—C5A—H5AB108.7H5BA—C5B—H5BB107.5
C6A—C5A—H5AB108.7C5B—C6B—H6BA109.5
H5AA—C5A—H5AB107.6C5B—C6B—H6BB109.5
C5A—C6A—H6AA109.5H6BA—C6B—H6BB109.5
C5A—C6A—H6AB109.5C5B—C6B—H6BC109.5
H6AA—C6A—H6AB109.5H6BA—C6B—H6BC109.5
C5A—C6A—H6AC109.5H6BB—C6B—H6BC109.5
H6AA—C6A—H6AC109.5C8B—C7B—N1B115.16 (11)
H6AB—C6A—H6AC109.5C8B—C7B—H7BA108.5
C8A—C7A—N1A114.88 (10)N1B—C7B—H7BA108.5
C8A—C7A—H7AA108.5C8B—C7B—H7BB108.5
N1A—C7A—H7AA108.5N1B—C7B—H7BB108.5
C8A—C7A—H7AB108.5H7BA—C7B—H7BB107.5
N1A—C7A—H7AB108.5C7B—C8B—H8BA109.5
H7AA—C7A—H7AB107.5C7B—C8B—H8BB109.5
C7A—C8A—H8AA109.5H8BA—C8B—H8BB109.5
C7A—C8A—H8AB109.5C7B—C8B—H8BC109.5
H8AA—C8A—H8AB109.5H8BA—C8B—H8BC109.5
C7A—C8A—H8AC109.5H8BB—C8B—H8BC109.5
H8AA—C8A—H8AC109.5C10B—C9B—N1B115.51 (11)
H8AB—C8A—H8AC109.5C10B—C9B—H9BA108.4
C10A—C9A—N1A114.62 (11)N1B—C9B—H9BA108.4
C10A—C9A—H9AA108.6C10B—C9B—H9BB108.4
N1A—C9A—H9AA108.6N1B—C9B—H9BB108.4
C10A—C9A—H9AB108.6H9BA—C9B—H9BB107.5
N1A—C9A—H9AB108.6C9B—C10B—H10D109.5
H9AA—C9A—H9AB107.6C9B—C10B—H10E109.5
C9A—C10A—H10A109.5H10D—C10B—H10E109.5
C9A—C10A—H10B109.5C9B—C10B—H10F109.5
H10A—C10A—H10B109.5H10D—C10B—H10F109.5
C9A—C10A—H10C109.5H10E—C10B—H10F109.5
H10A—C10A—H10C109.5C12B—C11B—N1B115.37 (10)
H10B—C10A—H10C109.5C12B—C11B—H11C108.4
C12A—C11A—N1A115.02 (10)N1B—C11B—H11C108.4
C12A—C11A—H11A108.5C12B—C11B—H11D108.4
N1A—C11A—H11A108.5N1B—C11B—H11D108.4
C12A—C11A—H11B108.5H11C—C11B—H11D107.5
N1A—C11A—H11B108.5C11B—C12B—H12D109.5
H11A—C11A—H11B107.5C11B—C12B—H12E109.5
C11A—C12A—H12A109.5H12D—C12B—H12E109.5
C11A—C12A—H12B109.5C11B—C12B—H12F109.5
H12A—C12A—H12B109.5H12D—C12B—H12F109.5
C11A—C12A—H12C109.5H12E—C12B—H12F109.5
H12A—C12A—H12C109.5H1W1—O1W—H2W1122.4
H12B—C12A—H12C109.5H1W2—O2W—H2W2107.0
C1B—O2B—H2OB109.5H2W3—O3W—H1W3105 (2)
C3B—O3B—H3OB109.5
O2A—C1A—C2A—C3A32.74 (15)O1B—C1B—C2B—C3B32.15 (15)
O1A—C1A—C2A—C3A149.15 (10)O2B—C1B—C2B—C3B149.04 (10)
C1A—C2A—C3A—O3A67.95 (12)C1B—C2B—C3B—O3B68.04 (12)
C1A—C2A—C3A—C4A167.69 (9)C1B—C2B—C3B—C4B167.90 (9)
O3A—C3A—C4A—O5A14.42 (14)O3B—C3B—C4B—O5B14.28 (14)
C2A—C3A—C4A—O5A136.25 (11)C2B—C3B—C4B—O5B136.21 (11)
O3A—C3A—C4A—O4A167.72 (9)O3B—C3B—C4B—O4B167.58 (10)
C2A—C3A—C4A—O4A45.90 (13)C2B—C3B—C4B—O4B45.64 (13)
C7A—N1A—C5A—C6A173.27 (12)C7B—N1B—C5B—C6B175.46 (16)
C11A—N1A—C5A—C6A65.49 (15)C9B—N1B—C5B—C6B54.24 (19)
C9A—N1A—C5A—C6A52.41 (15)C11B—N1B—C5B—C6B62.89 (19)
C5A—N1A—C7A—C8A178.34 (11)C5B—N1B—C7B—C8B174.61 (12)
C11A—N1A—C7A—C8A57.26 (14)C9B—N1B—C7B—C8B54.12 (15)
C9A—N1A—C7A—C8A60.18 (14)C11B—N1B—C7B—C8B63.67 (15)
C5A—N1A—C9A—C10A58.05 (15)C5B—N1B—C9B—C10B57.11 (16)
C7A—N1A—C9A—C10A60.11 (15)C7B—N1B—C9B—C10B60.26 (16)
C11A—N1A—C9A—C10A179.09 (13)C11B—N1B—C9B—C10B178.18 (13)
C5A—N1A—C11A—C12A59.67 (14)C5B—N1B—C11B—C12B63.04 (14)
C7A—N1A—C11A—C12A58.48 (14)C7B—N1B—C11B—C12B54.94 (15)
C9A—N1A—C11A—C12A178.89 (11)C9B—N1B—C11B—C12B176.59 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1OA···O4Ai0.821.682.4977 (11)171
O3A—H3OA···O2W0.821.982.7296 (14)151
O3A—H3OA···O5A0.822.272.6853 (11)112
O3B—H3OB···O3W0.822.002.7435 (13)151
O3B—H3OB···O5B0.822.262.6837 (12)112
O1W—H1W1···O4Aii0.922.032.9354 (17)166
O1W—H2W1···O1Biii0.921.902.8018 (18)165
O2W—H1W2···O5B0.841.992.7969 (13)162
O2W—H2W2···O3Biv0.722.182.8961 (13)176
O3W—H2W3···O3A0.80 (2)2.13 (2)2.9169 (13)173 (2)
O3W—H1W3···O5Ai0.89 (2)1.94 (2)2.7894 (12)160 (2)
C2A—H2AB···O1Wv0.972.443.3852 (18)165
C5A—H5AA···O1Aii0.972.413.2814 (15)149
C6A—H6AA···O1Wi0.962.593.296 (2)131
C6A—H6AB···O2Wi0.962.603.434 (2)146
C7A—H7AA···O1W0.972.423.2511 (18)144
C11A—H11B···O2A0.972.533.2884 (15)135
C7A—H7AB···O4Biii0.972.463.3796 (16)158
C5B—H5BB···O4Avi0.972.513.4141 (17)156
C6B—H6BC···O1Wvii0.962.583.350 (3)137
C7B—H7BB···O2Biv0.972.473.4325 (15)170
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1; (iii) x+1, y1/2, z+1; (iv) x1, y, z; (v) x, y, z+1; (vi) x, y+1/2, z+1; (vii) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC8H20N+·C4H5O5·1.36H2O
Mr287.83
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)7.4724 (2), 19.9721 (5), 10.2726 (3)
β (°) 92.481 (1)
V3)1531.64 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.35 × 0.32
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.950, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
36497, 8479, 7551
Rint0.029
(sin θ/λ)max1)0.867
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.03
No. of reflections8479
No. of parameters373
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.47

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1OA···O4Ai0.82001.68002.4977 (11)171
O3A—H3OA···O2W0.82001.98002.7296 (14)151
O3A—H3OA···O5A0.82002.27002.6853 (11)112
O3B—H3OB···O3W0.82002.00002.7435 (13)151
O3B—H3OB···O5B0.82002.26002.6837 (12)112
O1W—H1W1···O4Aii0.92002.03002.9354 (17)166
O1W—H2W1···O1Biii0.92001.90002.8018 (18)165
O2W—H1W2···O5B0.84001.99002.7969 (13)162
O2W—H2W2···O3Biv0.72002.18002.8961 (13)176
O3W—H2W3···O3A0.80 (2)2.13 (2)2.9169 (13)173 (2)
O3W—H1W3···O5Ai0.89 (2)1.94 (2)2.7894 (12)160 (2)
C2A—H2AB···O1Wv0.97002.44003.3852 (18)165
C5A—H5AA···O1Aii0.97002.41003.2814 (15)149
C6A—H6AA···O1Wi0.96002.59003.296 (2)131
C6A—H6AB···O2Wi0.96002.60003.434 (2)146
C7A—H7AA···O1W0.97002.42003.2511 (18)144
C11A—H11B···O2A0.97002.53003.2884 (15)135
C7A—H7AB···O4Biii0.97002.46003.3796 (16)158
C5B—H5BB···O4Avi0.97002.51003.4141 (17)156
C6B—H6BC···O1Wvii0.96002.58003.350 (3)137
C7B—H7BB···O2Biv0.97002.47003.4325 (15)170
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1; (iii) x+1, y1/2, z+1; (iv) x1, y, z; (v) x, y, z+1; (vi) x, y+1/2, z+1; (vii) x, y+1/2, z.
 

Footnotes

Additional correspondence author: Laboratory of Industrial Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. E-mail: basya@science.upm.edu.my.

Acknowledgements

The authors thank the Ministry of Higher Education, Malaysia, for the research grant 05-10-07-377FR (Fundamental Research Grant Scheme–FRGS). H-KF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship. H-KF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, C. R., Richard, P. L., Ward, A. J., van de Water, L. G. A., Masters, A. F. & Maschmeyer, T. (2006). Tetrahedron Lett. 47, 7367–7370.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAnandha Babu, G., Bhagavannarayana, G. & Ramasamy, P. (2008). J. Cryst. Growth, 310, 1228–1238.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, Y.-Y., Wang, G.-N., Zhou, Z., Wu, Y.-T., Geng, J. & Zhang, Z.-B. (2008). Chem. Commun. pp. 505–507.  Web of Science CrossRef Google Scholar
First citationRahman, M. B. A., Jumbri, K., Sirat, K., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, o2343.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o49-o50
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds