metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m68-m69

Aqua­(dicyanamido-κN1)(nitrato-κ2O,O′)(2,3,5,6-tetra-2-pyridylpyrazine-κ3N2,N1,N6)manganese(II)

aDepartamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain, and bDepartamento de Química Inorgánica, Facultad de Farmacia, Universidad del País Vasco, Apdo. 450, E-01080 Vitoria, Spain
*Correspondence e-mail: roberto.cortes@ehu.es

(Received 27 November 2008; accepted 9 December 2008; online 13 December 2008)

In the title compound, [Mn(C2N3)(NO3)(C24H16N6)(H2O)], the central manganese(II) ion is hepta­coordinated to a tridentate 2,3,5,6-tetra-2-pyridylpyrazine ligand (tppz), a bidentate nitrate ligand, a terminal monodentate dicyanamide ligand (dca) and a water mol­ecule. The structure contains isolated neutral complexes, which are linked by O(water)—H⋯N hydrogen bonds generating chains along [010].

Related literature

For related structures containing coordination compounds with the ligands tppz and dca, see: Carranza et al. (2003[Carranza, J., Brennan, C., Sletten, J., Clemente-Juan, J. M., Lloret, F. & Julve, M. (2003). Inorg. Chem. 42, 8716-8727.]); Hsu et al. (2005[Hsu, G.-Y., Chen, C.-W., Cheng, S.-C., Lin, S.-H., Wei, H.-H. & Lee, C.-J. (2005). Polyhedron, 24, 487-494.]). For related literature, see: Lainé et al. (1995[Lainé, P., Gourdon, A. & Launay, J.-P. (1995). Inorg. Chem. 34, 5156-5165.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C2N3)(NO3)(C24H16N6)(H2O)]

  • Mr = 589.44

  • Monoclinic, P 21 /n

  • a = 14.0988 (11) Å

  • b = 9.7739 (8) Å

  • c = 18.7205 (13) Å

  • β = 94.491 (6)°

  • V = 2571.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 298 (2) K

  • 0.42 × 0.31 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur 2 diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxford, England.]) Tmin = 0.856, Tmax = 0.969

  • 24694 measured reflections

  • 7480 independent reflections

  • 4848 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.119

  • S = 0.93

  • 7480 reflections

  • 376 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1W 2.1537 (15)
Mn1—N7 2.2457 (18)
Mn1—O1 2.2648 (15)
Mn1—N2 2.2796 (15)
Mn1—N1 2.3015 (15)
Mn1—N3 2.3247 (16)
Mn1—O2 2.4021 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯N6i 0.78 (2) 2.03 (2) 2.800 (2) 174 (3)
O1W—H2W⋯N7i 0.80 (2) 2.24 (2) 3.029 (2) 168 (2)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxford, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxford, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Only a few examples are known of coordination compounds with the ligands dicyanamido (dca) and 2,3,5,6-tetra-2-pyridylpyrazine (tppz) (Carranza et al., 2003; Hsu et al., 2005).

The molecule of the title compound (I) (Fig. 1) contains a central manganese(II) metal heptacoordinated to a terminal dicyanamide ligand, three nitrogen atoms of the tppz ligand, two oxygen atoms of the nitrate group, and one water molecule.

The central pyrazine ring of the tppz is severely distorted from planarity (N2—C11—C12—N5 = 20.9 (3)°, N2—C13—C14—N5 = 19.9 (2)°) and adopts a twist-boat conformation with a puckering amplitude of 0.215 (2)Å (Spek, 2003). The pyridyl rings are rotated away from planarity with the pyrazine ring, with angles between planes of 25.3 (1) and 21.5 (1)° for the ones coordinated to Mn(II), and larger [31.1 (1), 35.9 (1)°] for the other ones.

The O(water)—H···N hydrogen bonds formed between the water as donor, and a non-coordinated pyridyl ring and the coordinated nitrogen atom of dca as acceptors, generate chains of molecules along the [010] direction (Fig.2).

Related literature top

For related structures containing coordination compounds with the ligands tppz and dca, see: Carranza et al. (2003); Hsu et al. (2005). For related literature, see: Lainé et al. (1995).

Experimental top

The title compound was prepared by mixing two acetonitrile solutions (10 ml each) of Mn(NO3)2.4H2O (125.5 mg, 0.50 mmol) and 2,3,5,6-tetrakis(2-pyridyl)pirazine (97.1 mg, 0.25 mmol). After vigorous stirring for 3 h at a temperature of 30°C, a yellow precipitate appeared. To the resulting solution, a water/acetonitrile (50%) solution (10 ml) of sodium dicyanamide was added, and it was stirred at 40°C for 3 h, and then 2 days at room temperature. The precipitate was filtered off and yellow plaques formed from the resulting solution by slow evaporation at room temperature.

Refinement top

H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.82 (2), and with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR2004 Burla et al. (2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Detail of the chain generated by the O(water)—H···N hydrogen bonds.
Aqua(dicyanamido-κN1)(nitrato-κ2O,O')(2,3,5,6-tetra-2- pyridylpyrazine-κ3N2,N1,N6)manganese(II) top
Crystal data top
[Mn(C2N3)(NO3)(C24H16N6)(H2O)]F(000) = 1204
Mr = 589.44Dx = 1.522 Mg m3
Dm = 1.475 Mg m3
Dm measured by flotation
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2543 reflections
a = 14.0988 (11) Åθ = 3.2–31.9°
b = 9.7739 (8) ŵ = 0.57 mm1
c = 18.7205 (13) ÅT = 298 K
β = 94.491 (6)°Prism, yellow
V = 2571.8 (3) Å30.42 × 0.31 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur 2
diffractometer
7480 independent reflections
Radiation source: Enhance (Mo) X-ray Source4848 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 8.3504 pixels mm-1θmax = 30.0°, θmin = 2.7°
ω scansh = 1819
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1312
Tmin = 0.856, Tmax = 0.969l = 2626
24694 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: difference Fourier map
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0676P)2]
where P = (Fo2 + 2Fc2)/3
7480 reflections(Δ/σ)max = 0.003
376 parametersΔρmax = 0.77 e Å3
2 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Mn(C2N3)(NO3)(C24H16N6)(H2O)]V = 2571.8 (3) Å3
Mr = 589.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.0988 (11) ŵ = 0.57 mm1
b = 9.7739 (8) ÅT = 298 K
c = 18.7205 (13) Å0.42 × 0.31 × 0.08 mm
β = 94.491 (6)°
Data collection top
Oxford Diffraction Xcalibur 2
diffractometer
7480 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
4848 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.969Rint = 0.054
24694 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0492 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.77 e Å3
7480 reflectionsΔρmin = 0.31 e Å3
376 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction Ltd., 2007) Analytical numeric absorption correction using a multifaceted crystal model.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.666558 (19)0.45676 (3)0.206427 (15)0.02617 (9)
N10.78906 (11)0.48216 (15)0.29414 (8)0.0258 (3)
N20.80556 (10)0.38970 (15)0.16256 (8)0.0244 (3)
N30.63611 (11)0.34999 (16)0.09605 (9)0.0302 (4)
O10.51063 (11)0.51437 (17)0.19225 (9)0.0447 (4)
O20.58673 (10)0.60852 (16)0.28292 (8)0.0424 (4)
O1W0.63075 (10)0.27874 (16)0.26656 (9)0.0386 (4)
H1W0.5843 (14)0.239 (3)0.2725 (15)0.058*
H2W0.6758 (15)0.237 (2)0.2837 (13)0.058*
O30.44256 (10)0.67307 (17)0.25070 (9)0.0483 (4)
N40.84607 (13)0.11733 (18)0.00078 (9)0.0397 (4)
N50.97237 (11)0.37317 (17)0.10010 (8)0.0298 (4)
N61.03910 (11)0.63452 (17)0.22266 (9)0.0348 (4)
N70.70245 (13)0.64756 (18)0.14738 (10)0.0399 (4)
N80.77072 (15)0.6846 (3)0.03399 (12)0.0622 (6)
N90.6902 (2)0.7210 (4)0.08341 (14)0.1065 (12)
N100.51142 (11)0.60058 (17)0.24260 (9)0.0321 (4)
C10.87743 (13)0.45325 (18)0.27688 (10)0.0242 (4)
C20.95391 (14)0.4433 (2)0.32828 (11)0.0325 (4)
H21.01410.41950.31530.039*
C30.93869 (15)0.4693 (2)0.39852 (11)0.0377 (5)
H30.98890.46440.43370.045*
C40.84871 (15)0.5027 (2)0.41657 (11)0.0360 (5)
H40.83730.52220.46380.043*
C50.77617 (14)0.5066 (2)0.36298 (11)0.0315 (4)
H50.71510.52720.37530.038*
C60.71035 (13)0.33917 (19)0.05521 (10)0.0271 (4)
C70.69805 (15)0.3326 (2)0.01871 (11)0.0374 (5)
H70.75050.33130.04590.045*
C80.60688 (17)0.3280 (2)0.05189 (12)0.0472 (6)
H80.59710.32410.10160.057*
C90.53124 (16)0.3294 (2)0.01012 (13)0.0470 (6)
H90.46940.32130.03090.056*
C100.54801 (14)0.3427 (2)0.06286 (12)0.0394 (5)
H100.49620.34700.09060.047*
C110.80572 (13)0.34520 (18)0.09524 (9)0.0253 (4)
C120.89402 (13)0.31643 (19)0.06821 (10)0.0281 (4)
C130.88645 (12)0.42660 (18)0.19952 (10)0.0242 (4)
C140.96892 (13)0.43718 (19)0.16272 (10)0.0266 (4)
C151.05445 (13)0.5179 (2)0.18756 (10)0.0292 (4)
C161.14420 (14)0.4738 (2)0.17324 (12)0.0371 (5)
H161.15230.39310.14800.045*
C171.22185 (15)0.5528 (3)0.19744 (14)0.0480 (6)
H171.28320.52620.18870.058*
C181.20685 (16)0.6706 (3)0.23433 (14)0.0530 (6)
H181.25800.72420.25190.064*
C191.11509 (16)0.7090 (2)0.24518 (13)0.0459 (6)
H191.10560.79050.26930.055*
C200.90828 (14)0.2209 (2)0.00846 (10)0.0304 (4)
C210.98469 (15)0.2352 (2)0.03278 (11)0.0406 (5)
H211.02650.30850.02600.049*
C220.99719 (19)0.1369 (3)0.08467 (12)0.0523 (6)
H221.04790.14320.11340.063*
C230.9341 (2)0.0306 (3)0.09314 (13)0.0547 (7)
H230.94120.03670.12750.066*
C240.85993 (19)0.0258 (2)0.04955 (14)0.0517 (6)
H240.81690.04620.05580.062*
C250.72974 (15)0.6673 (2)0.09222 (13)0.0368 (5)
C260.72404 (19)0.7046 (3)0.02745 (15)0.0559 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02005 (14)0.03028 (16)0.02787 (16)0.00049 (11)0.00010 (10)0.00116 (12)
N10.0219 (8)0.0282 (8)0.0271 (8)0.0000 (6)0.0003 (6)0.0003 (6)
N20.0204 (7)0.0269 (8)0.0251 (8)0.0003 (6)0.0021 (6)0.0009 (6)
N30.0219 (8)0.0328 (9)0.0350 (9)0.0007 (6)0.0036 (7)0.0055 (7)
O10.0369 (9)0.0503 (9)0.0458 (9)0.0057 (7)0.0047 (7)0.0149 (8)
O20.0284 (8)0.0533 (10)0.0436 (9)0.0041 (7)0.0096 (7)0.0050 (8)
O1W0.0255 (8)0.0370 (9)0.0528 (9)0.0031 (6)0.0008 (7)0.0092 (7)
O30.0277 (8)0.0557 (10)0.0618 (10)0.0143 (7)0.0046 (7)0.0050 (8)
N40.0423 (10)0.0398 (10)0.0380 (10)0.0039 (8)0.0098 (8)0.0084 (8)
N50.0228 (8)0.0358 (9)0.0307 (8)0.0010 (6)0.0025 (7)0.0006 (7)
N60.0246 (8)0.0384 (10)0.0410 (10)0.0014 (7)0.0009 (7)0.0049 (8)
N70.0442 (11)0.0323 (10)0.0425 (11)0.0007 (8)0.0020 (9)0.0041 (8)
N80.0456 (12)0.0891 (18)0.0531 (13)0.0092 (12)0.0118 (11)0.0062 (12)
N90.085 (2)0.184 (4)0.0492 (16)0.030 (2)0.0023 (15)0.0184 (19)
N100.0250 (8)0.0374 (9)0.0340 (9)0.0026 (7)0.0023 (7)0.0033 (8)
C10.0232 (9)0.0247 (9)0.0244 (9)0.0010 (7)0.0008 (7)0.0012 (7)
C20.0222 (9)0.0421 (12)0.0322 (10)0.0045 (8)0.0039 (8)0.0009 (9)
C30.0352 (11)0.0465 (13)0.0293 (10)0.0023 (9)0.0104 (9)0.0015 (9)
C40.0433 (12)0.0399 (11)0.0244 (10)0.0016 (9)0.0001 (9)0.0035 (8)
C50.0298 (10)0.0349 (10)0.0301 (10)0.0015 (8)0.0044 (8)0.0026 (8)
C60.0243 (9)0.0260 (9)0.0299 (10)0.0001 (7)0.0042 (8)0.0031 (8)
C70.0347 (11)0.0454 (12)0.0310 (11)0.0026 (9)0.0036 (9)0.0008 (9)
C80.0478 (14)0.0553 (15)0.0355 (12)0.0057 (11)0.0164 (10)0.0070 (11)
C90.0319 (11)0.0535 (14)0.0526 (14)0.0025 (10)0.0161 (10)0.0121 (12)
C100.0231 (10)0.0444 (13)0.0497 (13)0.0008 (9)0.0051 (9)0.0131 (10)
C110.0236 (9)0.0261 (9)0.0257 (9)0.0001 (7)0.0014 (7)0.0000 (7)
C120.0260 (9)0.0314 (10)0.0266 (9)0.0000 (8)0.0008 (8)0.0014 (8)
C130.0198 (8)0.0256 (9)0.0266 (9)0.0025 (7)0.0025 (7)0.0007 (7)
C140.0205 (9)0.0298 (10)0.0290 (9)0.0016 (7)0.0014 (7)0.0006 (8)
C150.0204 (9)0.0357 (11)0.0310 (10)0.0017 (7)0.0009 (7)0.0017 (8)
C160.0233 (10)0.0424 (12)0.0456 (12)0.0007 (8)0.0028 (9)0.0035 (10)
C170.0205 (10)0.0605 (15)0.0624 (16)0.0012 (10)0.0005 (10)0.0021 (13)
C180.0262 (11)0.0605 (16)0.0708 (17)0.0119 (11)0.0050 (11)0.0108 (14)
C190.0358 (12)0.0441 (13)0.0565 (14)0.0066 (10)0.0036 (11)0.0125 (11)
C200.0305 (10)0.0349 (11)0.0257 (9)0.0040 (8)0.0021 (8)0.0001 (8)
C210.0350 (11)0.0513 (13)0.0367 (12)0.0006 (10)0.0103 (9)0.0003 (10)
C220.0533 (15)0.0690 (18)0.0374 (13)0.0108 (13)0.0209 (11)0.0010 (12)
C230.0729 (19)0.0531 (16)0.0396 (13)0.0094 (13)0.0147 (13)0.0128 (11)
C240.0624 (17)0.0437 (14)0.0500 (14)0.0076 (11)0.0112 (12)0.0135 (11)
C250.0302 (11)0.0321 (11)0.0464 (13)0.0029 (8)0.0076 (10)0.0002 (10)
C260.0520 (16)0.0694 (18)0.0481 (15)0.0163 (13)0.0146 (13)0.0007 (13)
Geometric parameters (Å, º) top
Mn1—O1W2.1537 (15)C3—H30.9300
Mn1—N72.2457 (18)C4—C51.376 (3)
Mn1—O12.2648 (15)C4—H40.9300
Mn1—N22.2796 (15)C5—H50.9300
Mn1—N12.3015 (15)C6—C71.383 (3)
Mn1—N32.3247 (16)C6—C111.488 (2)
Mn1—O22.4021 (15)C7—C81.384 (3)
N1—C51.337 (2)C7—H70.9300
N1—C11.341 (2)C8—C91.371 (3)
N2—C111.333 (2)C8—H80.9300
N2—C131.336 (2)C9—C101.374 (3)
N3—C101.346 (2)C9—H90.9300
N3—C61.348 (2)C10—H100.9300
O1—N101.264 (2)C11—C121.408 (3)
O2—N101.256 (2)C12—C201.483 (3)
O1W—H1W0.776 (16)C13—C141.401 (3)
O1W—H2W0.800 (16)C14—C151.485 (3)
O3—N101.221 (2)C15—C161.383 (3)
N4—C241.325 (3)C16—C171.387 (3)
N4—C201.340 (3)C16—H160.9300
N5—C141.333 (2)C17—C181.367 (3)
N5—C121.334 (2)C17—H170.9300
N6—C191.336 (3)C18—C191.377 (3)
N6—C151.342 (3)C18—H180.9300
N7—C251.146 (3)C19—H190.9300
N8—C251.284 (3)C20—C211.381 (3)
N8—C261.294 (4)C21—C221.387 (3)
N9—C261.128 (4)C21—H210.9300
C1—C21.391 (2)C22—C231.369 (4)
C1—C131.487 (2)C22—H220.9300
C2—C31.373 (3)C23—C241.377 (3)
C2—H20.9300C23—H230.9300
C3—C41.377 (3)C24—H240.9300
O1W—Mn1—N7177.74 (7)N3—C6—C11114.99 (16)
O1W—Mn1—O189.83 (6)C7—C6—C11122.91 (18)
N7—Mn1—O189.42 (7)C6—C7—C8119.3 (2)
O1W—Mn1—N2101.50 (6)C6—C7—H7120.3
N7—Mn1—N280.11 (6)C8—C7—H7120.3
O1—Mn1—N2152.04 (6)C9—C8—C7118.7 (2)
O1W—Mn1—N184.71 (6)C9—C8—H8120.6
N7—Mn1—N194.37 (6)C7—C8—H8120.6
O1—Mn1—N1136.40 (6)C8—C9—C10119.1 (2)
N2—Mn1—N170.72 (5)C8—C9—H9120.4
O1W—Mn1—N393.87 (6)C10—C9—H9120.4
N7—Mn1—N388.18 (6)N3—C10—C9123.0 (2)
O1—Mn1—N384.12 (6)N3—C10—H10118.5
N2—Mn1—N369.81 (5)C9—C10—H10118.5
N1—Mn1—N3139.34 (6)N2—C11—C12118.14 (16)
O1W—Mn1—O292.71 (6)N2—C11—C6114.86 (16)
N7—Mn1—O285.11 (6)C12—C11—C6126.90 (17)
O1—Mn1—O254.58 (5)N5—C12—C11118.71 (17)
N2—Mn1—O2148.05 (5)N5—C12—C20116.28 (16)
N1—Mn1—O282.45 (5)C11—C12—C20124.94 (17)
N3—Mn1—O2138.12 (5)N2—C13—C14118.22 (16)
C5—N1—C1117.95 (16)N2—C13—C1114.65 (16)
C5—N1—Mn1123.77 (13)C14—C13—C1127.13 (16)
C1—N1—Mn1117.69 (12)N5—C14—C13119.12 (16)
C11—N2—C13120.85 (16)N5—C14—C15116.12 (16)
C11—N2—Mn1119.97 (11)C13—C14—C15124.75 (17)
C13—N2—Mn1117.31 (12)N6—C15—C16123.04 (18)
C10—N3—C6117.61 (17)N6—C15—C14116.53 (17)
C10—N3—Mn1122.22 (13)C16—C15—C14120.42 (18)
C6—N3—Mn1116.22 (12)C15—C16—C17118.3 (2)
N10—O1—Mn197.27 (11)C15—C16—H16120.9
N10—O2—Mn190.98 (11)C17—C16—H16120.9
Mn1—O1W—H1W135 (2)C18—C17—C16119.0 (2)
Mn1—O1W—H2W114.3 (19)C18—C17—H17120.5
H1W—O1W—H2W110 (3)C16—C17—H17120.5
C24—N4—C20117.06 (19)C17—C18—C19119.2 (2)
C14—N5—C12120.17 (16)C17—C18—H18120.4
C19—N6—C15117.48 (18)C19—C18—H18120.4
C25—N7—Mn1133.43 (17)N6—C19—C18123.0 (2)
C25—N8—C26122.9 (2)N6—C19—H19118.5
O3—N10—O2122.18 (17)C18—C19—H19118.5
O3—N10—O1121.26 (17)N4—C20—C21123.30 (19)
O2—N10—O1116.56 (16)N4—C20—C12115.50 (17)
N1—C1—C2122.17 (17)C21—C20—C12121.08 (18)
N1—C1—C13115.05 (15)C20—C21—C22118.0 (2)
C2—C1—C13122.73 (17)C20—C21—H21121.0
C3—C2—C1118.60 (18)C22—C21—H21121.0
C3—C2—H2120.7C23—C22—C21119.3 (2)
C1—C2—H2120.7C23—C22—H22120.3
C2—C3—C4119.67 (19)C21—C22—H22120.3
C2—C3—H3120.2C22—C23—C24118.3 (2)
C4—C3—H3120.2C22—C23—H23120.9
C5—C4—C3118.29 (19)C24—C23—H23120.9
C5—C4—H4120.9N4—C24—C23124.0 (2)
C3—C4—H4120.9N4—C24—H24118.0
N1—C5—C4123.26 (18)C23—C24—H24118.0
N1—C5—H5118.4N7—C25—N8172.7 (2)
C4—C5—H5118.4N9—C26—N8174.4 (3)
N3—C6—C7121.95 (17)
O1W—Mn1—N1—C563.95 (15)Mn1—N1—C5—C4170.63 (15)
N7—Mn1—N1—C5113.98 (16)C3—C4—C5—N11.4 (3)
O1—Mn1—N1—C520.22 (19)C10—N3—C6—C75.5 (3)
N2—Mn1—N1—C5168.10 (16)Mn1—N3—C6—C7152.74 (16)
N3—Mn1—N1—C5153.72 (14)C10—N3—C6—C11178.84 (17)
O2—Mn1—N1—C529.50 (15)Mn1—N3—C6—C1123.0 (2)
O1W—Mn1—N1—C1107.06 (13)N3—C6—C7—C84.3 (3)
N7—Mn1—N1—C175.01 (14)C11—C6—C7—C8179.65 (19)
O1—Mn1—N1—C1168.77 (12)C6—C7—C8—C90.4 (3)
N2—Mn1—N1—C12.91 (12)C7—C8—C9—C103.5 (4)
N3—Mn1—N1—C117.29 (17)C6—N3—C10—C92.1 (3)
O2—Mn1—N1—C1159.49 (13)Mn1—N3—C10—C9154.67 (18)
O1W—Mn1—N2—C11100.10 (14)C8—C9—C10—N32.4 (4)
N7—Mn1—N2—C1181.53 (14)C13—N2—C11—C1210.4 (3)
O1—Mn1—N2—C1112.0 (2)Mn1—N2—C11—C12174.40 (13)
N1—Mn1—N2—C11179.74 (15)C13—N2—C11—C6166.21 (16)
N3—Mn1—N2—C1110.18 (13)Mn1—N2—C11—C62.2 (2)
O2—Mn1—N2—C11145.24 (13)N3—C6—C11—N213.9 (2)
O1W—Mn1—N2—C1395.37 (13)C7—C6—C11—N2161.74 (19)
N7—Mn1—N2—C1383.01 (13)N3—C6—C11—C12169.79 (18)
O1—Mn1—N2—C13152.51 (13)C7—C6—C11—C1214.5 (3)
N1—Mn1—N2—C1315.21 (12)C14—N5—C12—C1110.7 (3)
N3—Mn1—N2—C13174.72 (14)C14—N5—C12—C20166.23 (17)
O2—Mn1—N2—C1319.30 (19)N2—C11—C12—N520.9 (3)
O1W—Mn1—N3—C1084.37 (16)C6—C11—C12—N5155.22 (18)
N7—Mn1—N3—C1094.67 (16)N2—C11—C12—C20155.68 (18)
O1—Mn1—N3—C105.06 (16)C6—C11—C12—C2028.1 (3)
N2—Mn1—N3—C10174.79 (17)C11—N2—C13—C149.5 (3)
N1—Mn1—N3—C10170.75 (14)Mn1—N2—C13—C14154.90 (13)
O2—Mn1—N3—C1014.0 (2)C11—N2—C13—C1170.97 (16)
O1W—Mn1—N3—C6118.53 (13)Mn1—N2—C13—C124.63 (19)
N7—Mn1—N3—C662.43 (14)N1—C1—C13—N221.5 (2)
O1—Mn1—N3—C6152.04 (14)C2—C1—C13—N2155.81 (17)
N2—Mn1—N3—C617.70 (13)N1—C1—C13—C14157.98 (18)
N1—Mn1—N3—C632.16 (17)C2—C1—C13—C1424.7 (3)
O2—Mn1—N3—C6143.05 (12)C12—N5—C14—C139.4 (3)
O1W—Mn1—O1—N1097.99 (12)C12—N5—C14—C15169.43 (17)
N7—Mn1—O1—N1079.87 (13)N2—C13—C14—N519.9 (3)
N2—Mn1—O1—N10147.21 (12)C1—C13—C14—N5160.60 (17)
N1—Mn1—O1—N1015.86 (16)N2—C13—C14—C15158.84 (17)
N3—Mn1—O1—N10168.10 (12)C1—C13—C14—C1520.6 (3)
O2—Mn1—O1—N104.54 (10)C19—N6—C15—C160.9 (3)
O1W—Mn1—O2—N1092.39 (11)C19—N6—C15—C14179.71 (19)
N7—Mn1—O2—N1088.24 (11)N5—C14—C15—N6144.16 (18)
O1—Mn1—O2—N104.53 (10)C13—C14—C15—N634.6 (3)
N2—Mn1—O2—N10150.67 (11)N5—C14—C15—C1634.7 (3)
N1—Mn1—O2—N10176.69 (11)C13—C14—C15—C16146.5 (2)
N3—Mn1—O2—N106.46 (15)N6—C15—C16—C171.1 (3)
O1—Mn1—N7—C25110.2 (2)C14—C15—C16—C17179.9 (2)
N2—Mn1—N7—C2543.7 (2)C15—C16—C17—C180.0 (4)
N1—Mn1—N7—C25113.3 (2)C16—C17—C18—C191.3 (4)
N3—Mn1—N7—C2526.1 (2)C15—N6—C19—C180.5 (4)
O2—Mn1—N7—C25164.7 (2)C17—C18—C19—N61.6 (4)
Mn1—O2—N10—O3171.75 (17)C24—N4—C20—C210.4 (3)
Mn1—O2—N10—O17.42 (17)C24—N4—C20—C12176.33 (19)
Mn1—O1—N10—O3171.25 (16)N5—C12—C20—N4147.61 (18)
Mn1—O1—N10—O27.93 (18)C11—C12—C20—N429.1 (3)
C5—N1—C1—C22.4 (3)N5—C12—C20—C2128.5 (3)
Mn1—N1—C1—C2169.16 (14)C11—C12—C20—C21154.8 (2)
C5—N1—C1—C13179.72 (16)N4—C20—C21—C220.0 (3)
Mn1—N1—C1—C138.2 (2)C12—C20—C21—C22175.8 (2)
N1—C1—C2—C32.6 (3)C20—C21—C22—C230.0 (4)
C13—C1—C2—C3179.76 (18)C21—C22—C23—C240.3 (4)
C1—C2—C3—C40.8 (3)C20—N4—C24—C230.7 (4)
C2—C3—C4—C51.1 (3)C22—C23—C24—N40.6 (4)
C1—N1—C5—C40.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N6i0.78 (2)2.03 (2)2.800 (2)174 (3)
O1W—H2W···N7i0.80 (2)2.24 (2)3.029 (2)168 (2)
C5—H5···O20.932.533.122 (2)122
C7—H7···N40.932.602.966 (3)104
C10—H10···O10.932.513.027 (3)116
Symmetry code: (i) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C2N3)(NO3)(C24H16N6)(H2O)]
Mr589.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)14.0988 (11), 9.7739 (8), 18.7205 (13)
β (°) 94.491 (6)
V3)2571.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.42 × 0.31 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur 2
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.856, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
24694, 7480, 4848
Rint0.054
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.119, 0.93
No. of reflections7480
No. of parameters376
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.77, 0.31

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SIR2004 Burla et al. (2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2007), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Selected bond lengths (Å) top
Mn1—O1W2.1537 (15)Mn1—N12.3015 (15)
Mn1—N72.2457 (18)Mn1—N32.3247 (16)
Mn1—O12.2648 (15)Mn1—O22.4021 (15)
Mn1—N22.2796 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N6i0.78 (2)2.03 (2)2.800 (2)174 (3)
O1W—H2W···N7i0.80 (2)2.24 (2)3.029 (2)168 (2)
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by Universidad del País Vasco (UPV 00169.125–13956/2004) and the Ministerio de Ciencia y Tecnología (CTQ2005–05778-PPQ). LC thanks UPV/EHU for her doctoral fellowship. N de la P thanks UPV/EHU for financial support from "Convocatoria para la concesión de ayudas de especialización para investigadores doctores en la UPV/EHU (2008)"

References

First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCarranza, J., Brennan, C., Sletten, J., Clemente-Juan, J. M., Lloret, F. & Julve, M. (2003). Inorg. Chem. 42, 8716–8727.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHsu, G.-Y., Chen, C.-W., Cheng, S.-C., Lin, S.-H., Wei, H.-H. & Lee, C.-J. (2005). Polyhedron, 24, 487–494.  Web of Science CSD CrossRef CAS Google Scholar
First citationLainé, P., Gourdon, A. & Launay, J.-P. (1995). Inorg. Chem. 34, 5156–5165.  CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxford, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m68-m69
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds