metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­methyl­tin(IV)]-μ-2,5-di­fluoro­benzoato-κ2O:O′]

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: handongyin@163.com

(Received 12 November 2008; accepted 3 December 2008; online 10 December 2008)

In the title polymeric coordination compound, [Sn(CH3)3(C7H3F2O2)]n, the Sn atom exhibits a distorted trigonal-bipyramidal coordination geometry with the carboxyl­ate O atoms in the axial positions and the equatorial positions occupied by the methyl groups. The two Sn—O bond lengths are 2.225 (5) and 2.410 (6) Å.

Related literature

For a related structure, see: Wang et al. (2007[Wang, H., Yin, H. & Wang, D. (2007). Acta Cryst. E63, m2958.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)3(C7H3F2O2)]

  • Mr = 320.91

  • Tetragonal, P 43 21 2

  • a = 9.8857 (9) Å

  • c = 24.896 (2) Å

  • V = 2433.0 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.11 mm−1

  • T = 298 (2) K

  • 0.38 × 0.29 × 0.27 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.502, Tmax = 0.600 (expected range = 0.474–0.566)

  • 10078 measured reflections

  • 2152 independent reflections

  • 1996 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.107

  • S = 1.00

  • 2152 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.46 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 830 Friedel pairs

  • Flack parameter: −0.01 (8)

Table 1
Selected geometric parameters (Å, °)

Sn1—C9 2.103 (9)
Sn1—C10 2.110 (8)
Sn1—C8 2.118 (7)
Sn1—O1 2.225 (5)
Sn1—O2i 2.410 (6)
O1—Sn1—O2i 174.15 (19)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{1\over 4}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years the organotin derivatives have attracted considerable attention due to a significant antimicrobial properties as well as antitumor activities. Studies on organotin complexes containing carboxylate ligands with an additional donor atom (e.g N, S or F) that is available for coordinating to Sn atom have revealed that new structural types may lead to different activities. We have therefore synthesized the title compound, and present its crystal structure here. The molecular structure of the compound is shown in Fig.1 The Sn atom, assumes a distorted trigonal bipyramidal coordination geometry, provided by three methyl groups at the equatorial positions and two carboxylate groups at the axial positions. The Sn—O bond lengths in the compound (Table 1), are similar to those found in related organotin carboxylates (Wang et al., 2007). In the crystal packing, molecules are linked by intermolecular C—H···F hydrogen bonds (Fig.2, Table 1,)

Related literature top

For a related structure, see: Wang et al. (2007).

Experimental top

The reaction was carried out under nitrogen atmosphere. 2,5-Difluorobenzoic acid (1 mmol) and sodium ethoxide (1.2 mmol) were added to a stirred solution of benzene (30 ml) in a Schlenk flask and stirred for 0.5 h. Trimethyltin chloride (1 mmol) was then added to the reactor and the reaction mixture was stirred for 12 h at room temperature. The resulting clear solution was evaporated under vacuum. The product was crystallized from dichloromethane/methanol (1:1) to yield colourless block crystals (yield 83%. m.p.393K). Anal. Calcd (%) for C10H12F2O2Sn(Mr = 320.91): C, 37.43; H, 3.77; F, 11.84; Sn, 36.99. Found (%): C, 37.39; H, 3.86; F, 11.78; Sn, 36.89.

Refinement top

The H atoms were positioned geometrically, with methyl C—H distances of 0.96 Å and aromatic C—H distances of 0.93 Å, and refined as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C, O) or 1.5 Ueq(C) for the methyl group.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound, showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity. Symmetry codes: (A) = x - 1/2,-y + 3/2,-z + 1/4, (B) = x + 1/2,-y + 3/2,-z + 1/4
catena-Poly[[trimethyltin(IV)]-µ-2,5-difluorobenzoato-κ2O:O'] top
Crystal data top
[Sn(CH3)3(C7H3F2O2)]Dx = 1.752 Mg m3
Mr = 320.91Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 5675 reflections
Hall symbol: P 4nw 2abwθ = 2.2–26.4°
a = 9.8857 (9) ŵ = 2.11 mm1
c = 24.896 (2) ÅT = 298 K
V = 2433.0 (4) Å3Block, colourless
Z = 80.38 × 0.29 × 0.27 mm
F(000) = 1248
Data collection top
Siemens SMART CCD
diffractometer
2152 independent reflections
Radiation source: fine-focus sealed tube1996 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.502, Tmax = 0.600k = 117
10078 measured reflectionsl = 1629
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.066P)2 + 4.861P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2152 reflectionsΔρmax = 0.54 e Å3
136 parametersΔρmin = 0.46 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (8)
Crystal data top
[Sn(CH3)3(C7H3F2O2)]Z = 8
Mr = 320.91Mo Kα radiation
Tetragonal, P43212µ = 2.11 mm1
a = 9.8857 (9) ÅT = 298 K
c = 24.896 (2) Å0.38 × 0.29 × 0.27 mm
V = 2433.0 (4) Å3
Data collection top
Siemens SMART CCD
diffractometer
2152 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1996 reflections with I > 2σ(I)
Tmin = 0.502, Tmax = 0.600Rint = 0.034
10078 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.107Δρmax = 0.54 e Å3
S = 1.00Δρmin = 0.46 e Å3
2152 reflectionsAbsolute structure: Flack (1983)
136 parametersAbsolute structure parameter: 0.01 (8)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.79786 (5)0.82634 (5)0.11522 (2)0.05163 (18)
F11.1717 (7)1.1333 (7)0.1597 (3)0.111 (2)
F21.4123 (8)1.0943 (8)0.0335 (3)0.131 (3)
O10.9583 (5)0.9696 (5)0.0890 (2)0.0632 (14)
O21.1085 (6)0.8095 (6)0.1065 (3)0.0786 (18)
C11.0763 (7)0.9249 (7)0.0922 (3)0.0552 (19)
C21.1900 (8)1.0242 (7)0.0773 (3)0.0561 (18)
C31.2313 (10)1.1239 (11)0.1101 (4)0.080 (3)
C41.3367 (11)1.2144 (9)0.0992 (5)0.089 (3)
H41.36491.27870.12400.107*
C51.3953 (9)1.2021 (11)0.0498 (5)0.082 (3)
H51.46351.26150.03950.098*
C61.3539 (10)1.1028 (11)0.0153 (4)0.081 (3)
C71.2516 (10)1.0141 (11)0.0269 (4)0.078 (3)
H71.22400.94950.00200.093*
C80.6502 (9)0.9694 (8)0.0912 (3)0.067 (2)
H8A0.68491.02270.06210.100*
H8B0.62871.02740.12100.100*
H8C0.57000.92290.07970.100*
C90.8458 (10)0.6721 (11)0.0603 (4)0.081 (3)
H9A0.76450.62610.04970.122*
H9B0.90650.60880.07690.122*
H9C0.88820.71080.02920.122*
C100.8626 (9)0.8328 (10)0.1959 (3)0.070 (2)
H10A0.91120.75140.20430.105*
H10B0.78540.84050.21910.105*
H10C0.92070.90950.20110.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0368 (3)0.0477 (3)0.0704 (3)0.0054 (2)0.0009 (2)0.0029 (2)
F10.121 (6)0.108 (5)0.103 (4)0.027 (4)0.039 (4)0.022 (4)
F20.138 (6)0.136 (6)0.120 (5)0.010 (5)0.067 (5)0.039 (4)
O10.040 (3)0.047 (3)0.102 (4)0.009 (2)0.009 (3)0.020 (3)
O20.054 (3)0.054 (3)0.128 (5)0.005 (3)0.001 (3)0.029 (4)
C10.031 (3)0.047 (4)0.087 (5)0.004 (3)0.012 (3)0.014 (4)
C20.033 (3)0.046 (4)0.089 (5)0.005 (3)0.003 (4)0.015 (4)
C30.063 (6)0.083 (7)0.094 (7)0.012 (5)0.020 (5)0.004 (6)
C40.100 (8)0.048 (5)0.119 (8)0.007 (5)0.014 (6)0.007 (5)
C50.046 (5)0.067 (6)0.133 (9)0.001 (5)0.013 (5)0.035 (6)
C60.058 (5)0.087 (7)0.099 (7)0.012 (5)0.025 (5)0.039 (6)
C70.067 (6)0.089 (7)0.077 (6)0.006 (5)0.011 (5)0.026 (5)
C80.062 (5)0.050 (5)0.088 (5)0.013 (4)0.004 (4)0.007 (4)
C90.074 (6)0.092 (7)0.078 (6)0.025 (6)0.012 (5)0.009 (5)
C100.068 (5)0.074 (6)0.068 (5)0.008 (4)0.003 (4)0.004 (4)
Geometric parameters (Å, º) top
Sn1—C92.103 (9)C4—H40.9300
Sn1—C102.110 (8)C5—C61.366 (15)
Sn1—C82.118 (7)C5—H50.9300
Sn1—O12.225 (5)C6—C71.369 (14)
Sn1—O2i2.410 (6)C7—H70.9300
F1—C31.373 (11)C8—H8A0.9600
F2—C61.349 (11)C8—H8B0.9600
O1—C11.250 (9)C8—H8C0.9600
O2—C11.237 (9)C9—H9A0.9600
O2—Sn1ii2.410 (6)C9—H9B0.9600
C1—C21.537 (10)C9—H9C0.9600
C2—C31.344 (13)C10—H10A0.9600
C2—C71.399 (12)C10—H10B0.9600
C3—C41.399 (14)C10—H10C0.9600
C4—C51.365 (14)
C9—Sn1—C10125.0 (4)C6—C5—H5119.9
C9—Sn1—C8117.1 (4)F2—C6—C5118.8 (10)
C10—Sn1—C8117.2 (3)F2—C6—C7117.7 (11)
C9—Sn1—O196.3 (3)C5—C6—C7123.4 (10)
C10—Sn1—O192.5 (3)C6—C7—C2117.7 (11)
C8—Sn1—O189.1 (3)C6—C7—H7121.2
C9—Sn1—O2i87.8 (3)C2—C7—H7121.2
C10—Sn1—O2i88.5 (3)Sn1—C8—H8A109.5
C8—Sn1—O2i85.4 (3)Sn1—C8—H8B109.5
O1—Sn1—O2i174.15 (19)H8A—C8—H8B109.5
C1—O1—Sn1114.9 (4)Sn1—C8—H8C109.5
C1—O2—Sn1ii142.9 (5)H8A—C8—H8C109.5
O2—C1—O1125.8 (6)H8B—C8—H8C109.5
O2—C1—C2118.1 (6)Sn1—C9—H9A109.5
O1—C1—C2116.2 (6)Sn1—C9—H9B109.5
C3—C2—C7117.7 (8)H9A—C9—H9B109.5
C3—C2—C1123.0 (8)Sn1—C9—H9C109.5
C7—C2—C1119.3 (8)H9A—C9—H9C109.5
C2—C3—F1117.8 (9)H9B—C9—H9C109.5
C2—C3—C4125.3 (9)Sn1—C10—H10A109.5
F1—C3—C4116.8 (10)Sn1—C10—H10B109.5
C5—C4—C3115.7 (10)H10A—C10—H10B109.5
C5—C4—H4122.1Sn1—C10—H10C109.5
C3—C4—H4122.1H10A—C10—H10C109.5
C4—C5—C6120.1 (9)H10B—C10—H10C109.5
C4—C5—H5119.9
C9—Sn1—O1—C158.5 (6)C1—C2—C3—F12.4 (13)
C10—Sn1—O1—C167.1 (6)C7—C2—C3—C43.8 (15)
C8—Sn1—O1—C1175.6 (7)C1—C2—C3—C4178.1 (9)
Sn1ii—O2—C1—O1166.0 (7)C2—C3—C4—C53.6 (16)
Sn1ii—O2—C1—C213.5 (15)F1—C3—C4—C5179.3 (8)
Sn1—O1—C1—O22.8 (12)C3—C4—C5—C62.5 (15)
Sn1—O1—C1—C2176.8 (5)C4—C5—C6—F2179.0 (9)
O2—C1—C2—C3103.1 (10)C4—C5—C6—C72.0 (16)
O1—C1—C2—C376.4 (11)F2—C6—C7—C2179.2 (8)
O2—C1—C2—C778.8 (11)C5—C6—C7—C22.1 (15)
O1—C1—C2—C7101.7 (9)C3—C2—C7—C62.9 (13)
C7—C2—C3—F1179.5 (8)C1—C2—C7—C6178.9 (8)
Symmetry codes: (i) x1/2, y+3/2, z+1/4; (ii) x+1/2, y+3/2, z+1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···F1iii0.932.633.336 (13)133
Symmetry code: (iii) x+1/2, y+5/2, z+1/4.

Experimental details

Crystal data
Chemical formula[Sn(CH3)3(C7H3F2O2)]
Mr320.91
Crystal system, space groupTetragonal, P43212
Temperature (K)298
a, c (Å)9.8857 (9), 24.896 (2)
V3)2433.0 (4)
Z8
Radiation typeMo Kα
µ (mm1)2.11
Crystal size (mm)0.38 × 0.29 × 0.27
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.502, 0.600
No. of measured, independent and
observed [I > 2σ(I)] reflections
10078, 2152, 1996
Rint0.034
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.107, 1.00
No. of reflections2152
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.46
Absolute structureFlack (1983)
Absolute structure parameter0.01 (8)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT (Siemens, 1996, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Sn1—C92.103 (9)Sn1—O12.225 (5)
Sn1—C102.110 (8)Sn1—O2i2.410 (6)
Sn1—C82.118 (7)
O1—Sn1—O2i174.15 (19)
Symmetry code: (i) x1/2, y+3/2, z+1/4.
 

Acknowledgements

We acknowledge the National Natural Foundation of China (grant No. 20771053) and the Natural Science Foundation of Shandong Province (2005ZX09) for financial support.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, H., Yin, H. & Wang, D. (2007). Acta Cryst. E63, m2958.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds