organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Amino­phenyl naphthalene-1-sulfonate

aDepartment of Physics, Panimalar Institute of Technology, Chennai 600 095, India, bDepartment of Chemistry, SRM University, Ramapuram, Chennai 600 089, India, cDepartment of Physics, SRM University, Kattankulathur Campus, Chennai, India, dDepartment of Chemistry, Periyar E.V.R. College, Tiruchirappalli 620 023, India, and eDepartment of Physics, Presidency College, Chennai 600 005, India
*Correspondence e-mail: manivan_1999@yahoo.com

(Received 24 November 2008; accepted 4 December 2008; online 10 December 2008)

In the title compound, C16H13NO3S, the plane of the naphthalene ring system forms a dihedral angle of 64.66 (10)° with the benzene ring. The mol­ecular structure is stabilized by weak intra­molecular C—H⋯O inter­actions and the crystal packing is stabilized by weak inter­molecular N—H⋯O and C—H⋯O inter­actions and by ππ stacking inter­actions of the inversion-related naphthalene units [centroid–centroid distance of 3.7373 (14) Å].

Related literature

For the structures of closely related compounds, see: Manivannan et al. (2005a[Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005a). Acta Cryst. E61, o239-o241.],b[Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005b). Acta Cryst. E61, o242-o244.]); Ramachandran et al.(2007[Ramachandran, G., Kanakam, C. C., Manivannan, V., Thiruvenkatam, V. & Row, T. N. G. (2007). Acta Cryst. E63, o4638.]); Vennila et al. (2008[Vennila, J. P., Kavitha, H. P., Thiruvadigal, D. J., Venkatraman, B. R. & Manivannan, V. (2008). Acta Cryst. E64, o1848.]). For applications, see: Spungin et al. (1984[Spungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1984). Biochim. Biophys. Acta, 769, 531-542.]); Yachi et al. (1989[Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hananon, M. (1989). Biochim. Biophys. Acta, 978, 1-7.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO3S

  • Mr = 299.33

  • Monoclinic, P 21 /c

  • a = 8.4558 (2) Å

  • b = 8.6712 (3) Å

  • c = 19.5915 (6) Å

  • β = 100.321 (2)°

  • V = 1413.24 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 295 (2) K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.932, Tmax = 0.954

  • 19808 measured reflections

  • 4981 independent reflections

  • 3126 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.174

  • S = 1.05

  • 4981 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2 0.93 2.41 2.829 (3) 107
C9—H9⋯O3 0.93 2.56 3.127 (3) 120
N1—H1B⋯O3i 0.86 2.43 3.246 (3) 158
C7—H7⋯O2ii 0.93 2.56 3.422 (3) 154
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Several compounds containing the para-toluene sulfonate moiety are used in the fields of biology and industry. The merging of lipids can be monitored using a derivative of para-toluene sulfonate (Yachi et al., 1989). This method has been used in studying the membrane fusion during the acrosome reaction (Spungin et al., 1984).

The plane of the benzene ring forms a dihedral angle of 64.66 (10) ° with the naphthalene ring system. The torsion angles O2—S1—C1—C2 and O3—S1—C1—C10 [5.58 (17) ° and 52.09 (16) °, respectively] indicate the syn conformation of sulfonyl moiety. The molecular structure is stabilized by weak intramolecular C—H···O interactions and the crystal packing is stabilized by weak intermolecular C—H···O interactions, N—H···O interactions and π-π stacking interactions of the naphthalene fragments related by inversion center

Related literature top

For the structures of closely related compounds, see: Manivannan et al. (2005a,b); Ramachandran et al.(2007); Vennila et al. (2008). For applications, see: Spungin et al. (1984); Yachi et al. (1989).

Experimental top

1-Napthalene sulfonyl chloride (5 mmol) dissolved in acetone (4 ml) was added dropwise to 3-amino phenol (5 mmol) in aqueous NaOH (4 ml, 5%) with constant shaking. The precipitated compound (3 mmol, yield 60%) was recrystlized from ethanol to get diffraction quality brown colored crystals.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N) for N—H.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing viewed down the b axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
3-Aminophenyl naphthalene-1-sulfonate top
Crystal data top
C16H13NO3SF(000) = 624
Mr = 299.33Dx = 1.407 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4818 reflections
a = 8.4558 (2) Åθ = 2.2–25.4°
b = 8.6712 (3) ŵ = 0.24 mm1
c = 19.5915 (6) ÅT = 295 K
β = 100.321 (2)°Block, brown
V = 1413.24 (7) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEX2
diffractometer
4981 independent reflections
Radiation source: fine-focus sealed tube3126 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scansθmax = 32.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1210
Tmin = 0.932, Tmax = 0.954k = 1211
19808 measured reflectionsl = 2129
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0763P)2 + 0.3485P]
where P = (Fo2 + 2Fc2)/3
4981 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C16H13NO3SV = 1413.24 (7) Å3
Mr = 299.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4558 (2) ŵ = 0.24 mm1
b = 8.6712 (3) ÅT = 295 K
c = 19.5915 (6) Å0.30 × 0.25 × 0.20 mm
β = 100.321 (2)°
Data collection top
Bruker Kappa APEX2
diffractometer
4981 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3126 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.954Rint = 0.023
19808 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.05Δρmax = 0.46 e Å3
4981 reflectionsΔρmin = 0.44 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34222 (19)0.8581 (2)0.10826 (8)0.0475 (4)
C20.2573 (3)0.9698 (3)0.13547 (12)0.0688 (6)
H20.25430.97010.18270.083*
C30.1749 (3)1.0837 (3)0.09239 (19)0.0876 (8)
H30.11731.15960.11090.105*
C40.1793 (3)1.0828 (3)0.02504 (18)0.0858 (8)
H40.12411.15930.00290.103*
C50.2639 (2)0.9713 (2)0.00569 (11)0.0634 (5)
C60.2687 (4)0.9715 (4)0.07762 (13)0.0910 (9)
H60.21221.04680.10580.109*
C70.3515 (4)0.8673 (4)0.10559 (13)0.1015 (12)
H70.35370.87110.15290.122*
C80.4342 (4)0.7536 (3)0.06564 (14)0.0872 (9)
H80.49130.68080.08630.105*
C90.4342 (2)0.7451 (2)0.00414 (11)0.0619 (5)
H90.49040.66660.03030.074*
C100.34948 (19)0.85482 (19)0.03643 (8)0.0458 (4)
C110.21070 (19)0.52112 (19)0.14424 (9)0.0466 (4)
C120.0822 (2)0.5617 (2)0.09445 (10)0.0595 (5)
H120.09490.61760.05530.071*
C130.0674 (2)0.5150 (3)0.10555 (12)0.0696 (6)
H130.15820.54140.07340.084*
C140.0850 (2)0.4309 (2)0.16279 (11)0.0637 (5)
H140.18740.40250.16920.076*
C150.0471 (2)0.3876 (2)0.21112 (10)0.0561 (4)
C160.1979 (2)0.4357 (2)0.20153 (9)0.0511 (4)
H160.28900.41010.23360.061*
O10.36734 (15)0.56180 (15)0.13433 (7)0.0580 (3)
O20.3993 (2)0.7447 (2)0.23185 (7)0.0915 (6)
O30.60456 (18)0.7106 (2)0.15880 (10)0.0903 (6)
N10.0316 (3)0.3014 (3)0.26868 (11)0.0868 (6)
H1A0.06210.27330.27520.104*
H1B0.11560.27580.29810.104*
S10.44040 (6)0.72128 (7)0.16539 (2)0.06166 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0464 (8)0.0490 (9)0.0497 (8)0.0131 (7)0.0153 (6)0.0086 (7)
C20.0679 (12)0.0677 (13)0.0789 (13)0.0188 (10)0.0346 (10)0.0268 (11)
C30.0697 (14)0.0536 (13)0.144 (3)0.0011 (10)0.0312 (15)0.0233 (15)
C40.0699 (14)0.0511 (12)0.130 (2)0.0040 (10)0.0007 (14)0.0086 (14)
C50.0621 (11)0.0556 (11)0.0683 (12)0.0236 (9)0.0003 (9)0.0073 (9)
C60.1060 (19)0.0930 (19)0.0634 (13)0.0531 (16)0.0135 (13)0.0241 (13)
C70.136 (3)0.118 (2)0.0525 (13)0.082 (2)0.0230 (15)0.0135 (15)
C80.1037 (19)0.0958 (19)0.0737 (14)0.0525 (16)0.0469 (14)0.0426 (14)
C90.0619 (11)0.0660 (12)0.0638 (11)0.0206 (9)0.0276 (9)0.0226 (9)
C100.0451 (8)0.0451 (8)0.0482 (8)0.0160 (6)0.0112 (6)0.0062 (6)
C110.0461 (8)0.0416 (8)0.0523 (9)0.0039 (6)0.0095 (6)0.0014 (7)
C120.0603 (10)0.0606 (11)0.0536 (10)0.0068 (9)0.0006 (8)0.0050 (8)
C130.0519 (10)0.0769 (14)0.0725 (13)0.0074 (9)0.0091 (9)0.0047 (11)
C140.0522 (10)0.0598 (11)0.0798 (13)0.0175 (8)0.0139 (9)0.0150 (10)
C150.0643 (10)0.0438 (9)0.0640 (11)0.0099 (8)0.0214 (9)0.0058 (8)
C160.0524 (9)0.0452 (9)0.0546 (9)0.0002 (7)0.0068 (7)0.0035 (7)
O10.0501 (6)0.0556 (7)0.0704 (8)0.0023 (5)0.0165 (6)0.0074 (6)
O20.1164 (14)0.1138 (14)0.0419 (7)0.0494 (11)0.0078 (8)0.0014 (8)
O30.0456 (8)0.1086 (14)0.1099 (14)0.0144 (8)0.0046 (8)0.0307 (11)
N10.0905 (14)0.0891 (15)0.0865 (14)0.0159 (11)0.0316 (11)0.0238 (11)
S10.0536 (3)0.0762 (4)0.0524 (3)0.0199 (2)0.00177 (19)0.0072 (2)
Geometric parameters (Å, º) top
C1—C21.370 (3)C9—H90.9300
C1—C101.420 (2)C11—C161.365 (2)
C1—S11.7368 (19)C11—C121.370 (2)
C2—C31.401 (4)C11—O11.4173 (19)
C2—H20.9300C12—C131.382 (3)
C3—C41.327 (4)C12—H120.9300
C3—H30.9300C13—C141.368 (3)
C4—C51.401 (4)C13—H130.9300
C4—H40.9300C14—C151.381 (3)
C5—C61.417 (3)C14—H140.9300
C5—C101.418 (3)C15—N11.378 (3)
C6—C71.321 (5)C15—C161.386 (2)
C6—H60.9300C16—H160.9300
C7—C81.370 (5)O1—S11.5905 (14)
C7—H70.9300O2—S11.4212 (16)
C8—C91.369 (3)O3—S11.4199 (16)
C8—H80.9300N1—H1A0.8600
C9—C101.408 (3)N1—H1B0.8600
C2—C1—C10121.24 (18)C5—C10—C1117.02 (17)
C2—C1—S1117.12 (15)C16—C11—C12123.72 (16)
C10—C1—S1121.63 (13)C16—C11—O1117.47 (15)
C1—C2—C3120.2 (2)C12—C11—O1118.71 (16)
C1—C2—H2119.9C11—C12—C13116.40 (18)
C3—C2—H2119.9C11—C12—H12121.8
C4—C3—C2119.7 (2)C13—C12—H12121.8
C4—C3—H3120.2C14—C13—C12121.48 (18)
C2—C3—H3120.2C14—C13—H13119.3
C3—C4—C5122.6 (2)C12—C13—H13119.3
C3—C4—H4118.7C13—C14—C15120.92 (18)
C5—C4—H4118.7C13—C14—H14119.5
C4—C5—C6122.3 (3)C15—C14—H14119.5
C4—C5—C10119.2 (2)N1—C15—C14121.64 (19)
C6—C5—C10118.5 (2)N1—C15—C16119.91 (19)
C7—C6—C5121.6 (3)C14—C15—C16118.43 (17)
C7—C6—H6119.2C11—C16—C15119.01 (16)
C5—C6—H6119.2C11—C16—H16120.5
C6—C7—C8120.6 (2)C15—C16—H16120.5
C6—C7—H7119.7C11—O1—S1118.20 (11)
C8—C7—H7119.7C15—N1—H1A120.0
C9—C8—C7121.2 (3)C15—N1—H1B120.0
C9—C8—H8119.4H1A—N1—H1B120.0
C7—C8—H8119.4O3—S1—O2119.75 (11)
C8—C9—C10120.2 (2)O3—S1—O1103.16 (10)
C8—C9—H9119.9O2—S1—O1109.45 (9)
C10—C9—H9119.9O3—S1—C1110.36 (9)
C9—C10—C5117.90 (18)O2—S1—C1108.99 (11)
C9—C10—C1125.09 (18)O1—S1—C1103.85 (7)
C10—C1—C2—C30.2 (3)C16—C11—C12—C131.8 (3)
S1—C1—C2—C3179.87 (16)O1—C11—C12—C13178.00 (17)
C1—C2—C3—C40.1 (3)C11—C12—C13—C140.9 (3)
C2—C3—C4—C50.1 (4)C12—C13—C14—C151.0 (3)
C3—C4—C5—C6179.7 (2)C13—C14—C15—N1179.3 (2)
C3—C4—C5—C100.5 (3)C13—C14—C15—C162.1 (3)
C4—C5—C6—C7178.7 (2)C12—C11—C16—C150.7 (3)
C10—C5—C6—C70.6 (3)O1—C11—C16—C15176.96 (15)
C5—C6—C7—C80.9 (4)N1—C15—C16—C11179.90 (18)
C6—C7—C8—C90.4 (4)C14—C15—C16—C111.3 (3)
C7—C8—C9—C100.5 (3)C16—C11—O1—S191.61 (17)
C8—C9—C10—C50.8 (3)C12—C11—O1—S191.97 (18)
C8—C9—C10—C1179.44 (16)C11—O1—S1—O3168.69 (12)
C4—C5—C10—C9179.52 (17)C11—O1—S1—O240.15 (16)
C6—C5—C10—C90.3 (2)C11—O1—S1—C176.12 (13)
C4—C5—C10—C10.7 (2)C2—C1—S1—O3127.86 (16)
C6—C5—C10—C1179.93 (16)C10—C1—S1—O352.09 (16)
C2—C1—C10—C9179.68 (17)C2—C1—S1—O25.58 (17)
S1—C1—C10—C90.3 (2)C10—C1—S1—O2174.48 (13)
C2—C1—C10—C50.6 (2)C2—C1—S1—O1122.16 (14)
S1—C1—C10—C5179.50 (12)C10—C1—S1—O157.89 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.932.412.829 (3)107
C9—H9···O30.932.563.127 (3)120
N1—H1B···O3i0.862.433.246 (3)158
C7—H7···O2ii0.932.563.422 (3)154
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H13NO3S
Mr299.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.4558 (2), 8.6712 (3), 19.5915 (6)
β (°) 100.321 (2)
V3)1413.24 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEX2
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.932, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
19808, 4981, 3126
Rint0.023
(sin θ/λ)max1)0.750
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.174, 1.05
No. of reflections4981
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.44

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.932.412.829 (3)107
C9—H9···O30.932.563.127 (3)120
N1—H1B···O3i0.862.433.246 (3)158
C7—H7···O2ii0.932.563.422 (3)153.7
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge the Sophisticated Analytical Instrument Facility, Indian Institute of Technology, Madras, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationManivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005a). Acta Cryst. E61, o239–o241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationManivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005b). Acta Cryst. E61, o242–o244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamachandran, G., Kanakam, C. C., Manivannan, V., Thiruvenkatam, V. & Row, T. N. G. (2007). Acta Cryst. E63, o4638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1984). Biochim. Biophys. Acta, 769, 531–542.  Google Scholar
First citationVennila, J. P., Kavitha, H. P., Thiruvadigal, D. J., Venkatraman, B. R. & Manivannan, V. (2008). Acta Cryst. E64, o1848.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hananon, M. (1989). Biochim. Biophys. Acta, 978, 1–7.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds