organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl-4H-3,1-benzoxazin-4-one

aDepartment of Chemistry, SRM University, Ramapuram Campus, Chennai 600 089, India, bDepartment of Chemistry, SRM University, Kattankulathur Campus, Kanchipuram, India, cDepartment of Physics, Panimalar Institute of Technology, Chennai, India, and dDepartment of Physics, Presidency College, Chennai 600 005, India
*Correspondence e-mail: manivan_1999@yahoo.com

(Received 3 December 2008; accepted 10 December 2008; online 17 December 2008)

The title mol­ecule, C14H9NO2, is nearly planar with a dihedral angle of 3.72 (4)° beteewn the plane of the phenyl ring and the 3,1-benzoxazin-4-one fragment. The mol­ecules are arranged into stacks parallel to the b axis via ππ stacking inter­actions [centroid-centroid distance = 4.2789 (11) Å] and the crystal packing is additionally stabilized by weak inter­molecular C—H⋯O inter­actions.

Related literature

For the biological activity of oxazin-4-ones, see: Pietsch & Gütschow (2005[Pietsch, M. & Gütschow, M. (2005). J. Med. Chem. 48, 8270-8288.]); Tarzia et al. (2007[Tarzia, G., Antonietti, F., Duranti, A., Tontini, A., Mor, M., Rivara, S., Traldi, P., Astarita, G., King, A., Clapper, J. R. & Piomelli, D. (2007). Ann. Chim. 97, 887-894.]). For similar structures, see: Crane & Rogerson (2004[Crane, J. D. & Rogerson, E. (2004). Acta Cryst. E60, o669-o670.]); Khan et al. (2007[Khan, Z. A., Khan, K. M. & Anjum, S. (2007). Acta Cryst. E63, o4226-o4227.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9NO2

  • Mr = 223.22

  • Monoclinic, P 21 /n

  • a = 13.3055 (16) Å

  • b = 3.8930 (4) Å

  • c = 20.445 (2) Å

  • β = 94.946 (3)°

  • V = 1055.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 (2) K

  • 0.20 × 0.16 × 0.16 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.985

  • 13688 measured reflections

  • 3034 independent reflections

  • 1800 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.187

  • S = 1.08

  • 3034 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.93 2.51 3.294 (2) 142
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 andSAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 andSAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Oxazin-4-one derivatives are used as inhibitors of the alpha/beta hydrolases, cholesterol esterase and acetylcholinesterase (Pietsch & Gütschow, 2005) and are potent inhibitors of the endocannabinoid-deactivating enzyme, monoacylglycerol lipase (Tarzia et al., 2007).

The geometric parameters of the title molecule (Fig. 1) agree well with the earlier reported structures (Crane & Rogerson, 2004; Khan et al., 2007). The plane of the phenyl ring forms a dihedral angle of 3.72 (4)° with the benzo[d][1,3]oxazin-4-one moiety. The molecular structure is stabilized by weak intramolecular C–H···O interaction and the crystal packing is stabilized by weak intermolecular C—H···O and π-π stacking interactions.

Related literature top

For the biological activity of oxazin-4-ones, see: Pietsch & Gütschow (2005); Tarzia et al. (2007). For similar structures, see: Crane & Rogerson (2004); Khan et al. (2007).

Experimental top

To a stirred solution of anthranilic acid (0.01 mol) in pyridine (60 ml), benzoyl chloride (0.01 mol) was added dropwise maintaining the temperature near 8° C for one hour. The reaction mixture was stirred for another 2 h at room temperature. While stirring, a solid product separated out. The whole reaction mixture was neutralized with NaHCO3 solution. A pale yellow solid deposited was filtered, washed with water and recrystallized from ethanol to get diffraction quality crystals; yYield 78%.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing viewed down the b axis. C-H···O hydrogen bonds are shown as dashed lines.
2-Phenyl-4H-3,1-benzoxazin-4-one top
Crystal data top
C14H9NO2F(000) = 464
Mr = 223.22Dx = 1.405 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2312 reflections
a = 13.3055 (16) Åθ = 1.7–29.5°
b = 3.8930 (4) ŵ = 0.10 mm1
c = 20.445 (2) ÅT = 295 K
β = 94.946 (3)°Block, pale yellow
V = 1055.1 (2) Å30.20 × 0.16 × 0.16 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
3034 independent reflections
Radiation source: fine-focus sealed tube1800 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 0 pixels mm-1θmax = 29.8°, θmin = 1.8°
ω and ϕ scansh = 1817
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 55
Tmin = 0.981, Tmax = 0.985l = 2828
13688 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0948P)2]
where P = (Fo2 + 2Fc2)/3
3034 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H9NO2V = 1055.1 (2) Å3
Mr = 223.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.3055 (16) ŵ = 0.10 mm1
b = 3.8930 (4) ÅT = 295 K
c = 20.445 (2) Å0.20 × 0.16 × 0.16 mm
β = 94.946 (3)°
Data collection top
Bruker Kappa APEXII
diffractometer
3034 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1800 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.985Rint = 0.036
13688 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 1.08Δρmax = 0.24 e Å3
3034 reflectionsΔρmin = 0.28 e Å3
154 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.54301 (13)0.4961 (4)0.20378 (8)0.0439 (4)
C20.48811 (15)0.6405 (4)0.15009 (9)0.0533 (5)
H20.42270.71750.15390.064*
C30.52987 (17)0.6703 (5)0.09133 (10)0.0663 (6)
H30.49240.76390.05510.080*
C40.62706 (19)0.5616 (6)0.08600 (11)0.0718 (6)
H40.65540.58440.04620.086*
C50.68254 (16)0.4204 (5)0.13861 (12)0.0680 (6)
H50.74820.34720.13450.082*
C60.64107 (13)0.3866 (5)0.19766 (10)0.0549 (5)
H60.67870.29040.23350.066*
C70.49642 (12)0.4637 (4)0.26569 (8)0.0412 (4)
C80.52751 (12)0.2379 (4)0.37481 (8)0.0466 (4)
C90.42925 (12)0.3731 (4)0.38655 (8)0.0412 (4)
C100.39216 (13)0.3387 (4)0.44755 (9)0.0489 (4)
H100.43070.23120.48170.059*
C110.29830 (14)0.4643 (5)0.45710 (9)0.0534 (5)
H110.27330.44450.49800.064*
C120.24090 (14)0.6201 (5)0.40597 (10)0.0535 (5)
H120.17710.70270.41280.064*
C130.27615 (12)0.6554 (4)0.34535 (9)0.0479 (4)
H130.23640.75990.31130.057*
C140.37202 (12)0.5334 (4)0.33502 (8)0.0404 (4)
N10.40839 (10)0.5770 (3)0.27363 (7)0.0441 (4)
O10.55759 (8)0.2978 (3)0.31294 (6)0.0495 (3)
O20.58392 (10)0.0790 (4)0.41188 (6)0.0698 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0438 (9)0.0438 (8)0.0439 (10)0.0068 (7)0.0027 (7)0.0010 (7)
C20.0560 (11)0.0553 (10)0.0484 (11)0.0045 (8)0.0033 (9)0.0046 (8)
C30.0816 (16)0.0675 (12)0.0503 (12)0.0070 (10)0.0083 (11)0.0089 (9)
C40.0859 (17)0.0717 (13)0.0618 (14)0.0187 (11)0.0290 (12)0.0008 (10)
C50.0567 (12)0.0758 (13)0.0743 (15)0.0074 (10)0.0225 (11)0.0052 (11)
C60.0443 (10)0.0630 (11)0.0578 (12)0.0049 (8)0.0065 (9)0.0011 (8)
C70.0384 (9)0.0414 (8)0.0422 (10)0.0032 (6)0.0053 (7)0.0008 (6)
C80.0404 (9)0.0546 (9)0.0440 (10)0.0025 (7)0.0012 (8)0.0069 (7)
C90.0391 (9)0.0418 (8)0.0415 (9)0.0023 (6)0.0027 (7)0.0003 (6)
C100.0496 (10)0.0531 (9)0.0431 (10)0.0017 (7)0.0018 (8)0.0040 (7)
C110.0542 (11)0.0592 (10)0.0476 (11)0.0037 (8)0.0100 (9)0.0048 (8)
C120.0424 (10)0.0569 (10)0.0618 (13)0.0010 (7)0.0071 (9)0.0099 (8)
C130.0393 (9)0.0531 (9)0.0499 (11)0.0030 (7)0.0047 (8)0.0020 (7)
C140.0370 (8)0.0408 (8)0.0423 (9)0.0020 (6)0.0019 (7)0.0022 (6)
N10.0399 (8)0.0495 (7)0.0421 (8)0.0008 (6)0.0018 (6)0.0033 (6)
O10.0387 (7)0.0644 (7)0.0447 (7)0.0069 (5)0.0003 (5)0.0075 (5)
O20.0532 (8)0.0981 (10)0.0576 (9)0.0236 (7)0.0018 (7)0.0257 (7)
Geometric parameters (Å, º) top
C1—C21.384 (2)C8—O21.1926 (19)
C1—C61.388 (2)C8—O11.3791 (19)
C1—C71.462 (2)C8—C91.448 (2)
C2—C31.371 (2)C9—C101.387 (2)
C2—H20.9300C9—C141.393 (2)
C3—C41.374 (3)C10—C111.371 (2)
C3—H30.9300C10—H100.9300
C4—C51.367 (3)C11—C121.381 (3)
C4—H40.9300C11—H110.9300
C5—C61.376 (3)C12—C131.369 (2)
C5—H50.9300C12—H120.9300
C6—H60.9300C13—C141.394 (2)
C7—N11.275 (2)C13—H130.9300
C7—O11.3702 (18)C14—N11.394 (2)
C2—C1—C6119.27 (17)O2—C8—C9127.66 (16)
C2—C1—C7119.16 (15)O1—C8—C9115.34 (14)
C6—C1—C7121.56 (16)C10—C9—C14120.63 (15)
C3—C2—C1120.20 (18)C10—C9—C8120.68 (15)
C3—C2—H2119.9C14—C9—C8118.68 (15)
C1—C2—H2119.9C11—C10—C9119.55 (16)
C2—C3—C4119.9 (2)C11—C10—H10120.2
C2—C3—H3120.0C9—C10—H10120.2
C4—C3—H3120.0C10—C11—C12120.00 (17)
C5—C4—C3120.64 (19)C10—C11—H11120.0
C5—C4—H4119.7C12—C11—H11120.0
C3—C4—H4119.7C13—C12—C11121.27 (16)
C4—C5—C6119.9 (2)C13—C12—H12119.4
C4—C5—H5120.0C11—C12—H12119.4
C6—C5—H5120.0C12—C13—C14119.49 (16)
C5—C6—C1120.05 (19)C12—C13—H13120.3
C5—C6—H6120.0C14—C13—H13120.3
C1—C6—H6120.0C9—C14—N1121.73 (14)
N1—C7—O1124.73 (15)C9—C14—C13119.05 (15)
N1—C7—C1122.90 (15)N1—C14—C13119.22 (15)
O1—C7—C1112.37 (14)C7—N1—C14117.80 (14)
O2—C8—O1117.00 (15)C7—O1—C8121.64 (12)
C6—C1—C2—C30.9 (2)C9—C10—C11—C120.8 (3)
C7—C1—C2—C3179.33 (15)C10—C11—C12—C130.6 (3)
C1—C2—C3—C41.0 (3)C11—C12—C13—C140.3 (3)
C2—C3—C4—C50.7 (3)C10—C9—C14—N1178.74 (14)
C3—C4—C5—C60.1 (3)C8—C9—C14—N12.3 (2)
C4—C5—C6—C10.0 (3)C10—C9—C14—C130.8 (2)
C2—C1—C6—C50.4 (3)C8—C9—C14—C13178.16 (14)
C7—C1—C6—C5179.88 (15)C12—C13—C14—C91.0 (2)
C2—C1—C7—N13.3 (2)C12—C13—C14—N1178.56 (14)
C6—C1—C7—N1176.50 (15)O1—C7—N1—C140.9 (2)
C2—C1—C7—O1176.31 (13)C1—C7—N1—C14179.59 (12)
C6—C1—C7—O13.9 (2)C9—C14—N1—C70.2 (2)
O2—C8—C9—C103.1 (3)C13—C14—N1—C7179.81 (15)
O1—C8—C9—C10177.93 (14)N1—C7—O1—C80.1 (2)
O2—C8—C9—C14175.84 (17)C1—C7—O1—C8179.43 (13)
O1—C8—C9—C143.1 (2)O2—C8—O1—C7176.92 (16)
C14—C9—C10—C110.1 (2)C9—C8—O1—C72.1 (2)
C8—C9—C10—C11179.02 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.392.713 (2)101
C10—H10···O2i0.932.513.294 (2)142
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H9NO2
Mr223.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)13.3055 (16), 3.8930 (4), 20.445 (2)
β (°) 94.946 (3)
V3)1055.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.16 × 0.16
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
13688, 3034, 1800
Rint0.036
(sin θ/λ)max1)0.699
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.187, 1.08
No. of reflections3034
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.28

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.392.713 (2)101
C10—H10···O2i0.932.513.294 (2)142
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the management of SRM University for providing financial assistance for the pilot project.

References

First citationBruker (2004). APEX2 andSAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrane, J. D. & Rogerson, E. (2004). Acta Cryst. E60, o669–o670.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, Z. A., Khan, K. M. & Anjum, S. (2007). Acta Cryst. E63, o4226–o4227.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPietsch, M. & Gütschow, M. (2005). J. Med. Chem. 48, 8270-8288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarzia, G., Antonietti, F., Duranti, A., Tontini, A., Mor, M., Rivara, S., Traldi, P., Astarita, G., King, A., Clapper, J. R. & Piomelli, D. (2007). Ann. Chim. 97, 887–894.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds