organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Phthalimidometh­yl)pyridinium p-toluene­sulfonate

aDepartment of Chemistry, Syracuse University, Syracuse, New York 13244, USA
*Correspondence e-mail: jazubiet@syr.edu

(Received 6 November 2008; accepted 19 November 2008; online 10 December 2008)

In the crystal of the title compound, C14H11N2O2+·C7H7O3S, the cation and anion inter­act by way of an aromatic ππ inter­action [centroid–centroid separation = 3.5783 (2) Å] and a T-stacking (C—H⋯π) inter­action between cations. The dihedral angle between the aromatic rings in the cation is 61.73 (8)°. The ionic units are aligned in a zigzag fashion in the b-axis direction.

Related literature

For medicinal background, see: Al-Madhoun et al. (2002[Al-Madhoun, A. S., Johnsamuel, J., Yan, J., Ji, W., Wang, J., Zhuo, J.-C., Lunato, A. J., Woollard, J. E., Hawk, A. E., Cosquer, G. Y., Blue, T. E., Eriksson, S. & Tjarks, W. (2002). J. Med. Chem. 45, 4018-4028.]); Arner & Eriksson (1995[Arner, E. S. J. & Eriksson, S. (1995). Pharmacol. Ther. 67, 155-186.]); Bello (1974[Bello, L. J. (1974). Exp. Cell Res. 89, 263-274.]); Celen et al. (2007[Celen, S., de Groot, T., Balzarini, J., Vunckx, K., Terwinghe, C., Vermaelen, P., Van Berckelaer, L., Vanbilloen, H., Nuyts, J., Mortelmans, L., Verbruggen, A. & Bormans, G. (2007). Nucl. Med. Biol. 34, 283-291.]); Eriksson et al. (2002[Eriksson, S., Munch-Petersen, B., Johansson, K. & Eklund, H. (2002). Cell. Mol. Life Sci. 59, 1327-1346.]); Wei et al. (2005[Wei, L., Babich, J., Eckelman, W. C. & Zubieta, J. (2005). Inorg. Chem. 44, 2198-2209.]); Welin et al. (2004[Welin, M., Kosinska, U., Mikkelsen, N.-E., Carnrot, C., Zhu, C., Wang, L., Eriksson, S., Munch-Petersen, B. & Eklund, H. (2004). Proc. Natl Acad. Sci. 101, 17970-17975.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N2O2+·C7H7O3S

  • Mr = 410.43

  • Monoclinic, P 21 /c

  • a = 7.6944 (5) Å

  • b = 33.626 (2) Å

  • c = 7.9426 (5) Å

  • β = 116.416 (1)°

  • V = 1840.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 90 (2) K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.939, Tmax = 0.958

  • 19080 measured reflections

  • 4482 independent reflections

  • 3753 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.124

  • S = 1.12

  • 4482 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg1i 0.95 2.70 3.531 (2) 147
Symmetry code: (i) -x+1, -y, -z. Cg1 is the centroid of the N2/C10–C14 ring.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz (1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Radiolabeled nucleosides and nucleoside analogs may be good candidates for imaging and therapeutic applications because of their metabolic entrapment in rapidly dividing cells like tumor cells. These radiolabeled nucleoside derivatives may act as substrates for the human cytosolic thymidine kinase (hTK-1), an enzyme of the salvage pathway which catalyzes the phosphorylation of nucleosides to their corresponding 5'-monophosphates (Welin et al., 2004). The phosphorylation would mainly occur in proliferating tumor cells since hTK-1 shows a dramatically increased activity in tumor cells compared to quiescent cells (Bello, 1974). The phosphorylated nucleosides would be entrapped inside the proliferating cells because of their negatively charged phosphate moiety retarding the cellular efflux (Arner et al., 1995). Thus, a radiolabeled nucleoside analog could be used as probe for tumor cell proliferation since the entrapment results in an accumulation in tissue with elevated hTK-1 activity. The main problem for the development of a suitable nucleoside analog lies in the narrow substrate specifity of hTK-1 (Eriksson et al., 2002). The natural substrates for hTK-1 are thymidine and uridine. Major modifications of the corresponding nucleoside, however, may lead to a highly decreased activity. The literature on the interaction of thymidine derivatives with hTK-1 is not totally unambiguous about the effects of various substitutions. For example, N-3 derivatized thymidine analogs have been reported to be inactive (Celen et al., 2007). On the other hand, N-3 modified carboranylalkyl thymidine analogs show acceptable conversion rates (Al-Madhoun et al., 2002). Therefore, we made a set of several thymidine and uridine analogs modified at different positions of the ribose and the base moiety to get further insight on the effects of various derivatizations. To expand our SAAC concept (single amino acid chelate) for radioimaging and radiotherapeutic purposes on nucleosides, the title phthalimidomethylpyridinium p-toluenesulfonate salt, (I), was prepared as part of a series of tosylalkylphthalimide derivatives recently synthesized in our group. This series is used for the attachment of a SAAC chelate at the N-3 and C-5 position of the base moiety of thymidine (Bartholomä et al. unpublished results). The SAAC chelate allows hereby the radiolabelling of thymidine and uridine derivatives by the coordination of the [M(CO)3]+ core (M = 186/188Re, 99mTc) (Wei et al., 2005). The ideal decay properties, low cost and convenient availability of 99mTc from generator columns make the corresponding nucleoside complexes interesting candidates for imaging purposes while their corresponding rhenium complexes could be used as therapeutic counterparts.

Due to the tetrahedral arrangement of the connecting methyl group, the phthalimidomethylpyridinium cation in (I) is not planar. The tosylate anion sits on top of one end of the pyridinium residue showing aromatic π-π interaction. The centroid distance between those two aromatic rings is 3.5783 (2) Å. The other end of the pyridinium moiety shows some interaction with the phthalimide part of neighbored phthalimidomethyl-pyridinium cation. Thus, a T-stacking between the pyridinium residue and the benzyl ring of the phthalimide residue occurs (Table 1). The distances between the interacting C—H of the phthalimide and the centroid of the pyridinium residue are C2–Centroid = 3.5313 (2) Å and H2–Centroid = 2.70Å, respectively. The corresponding angle C2–H2···Centroid is 147°. The phthalimide moiety itself has a planar geometry. All bond length and angles fall in expected ranges. In the crystal, the ionic units are aligned in a zigzag arrangement in direction of the b axis.

Related literature top

For medicinal background, see: Al-Madhoun et al. (2002); Arner & Eriksson (1995); Bello (1974); Celen et al. (2007); Eriksson et al. (2002); Wei et al. (2005); Welin et al. (2004). Cg1is the centroid of the N2/C10-C14 ring.

Experimental top

2.00 g (11.29 mmol) N-(Hydroxymethyl)phthalimide were dissolved in 20 ml anhydrous pyridine under an inert atmosphere followed by a dropwise addition of 3.23 g (16.93 mmol, 1.5 equiv.) p-Toluenesulfonyl chloride in 20 ml anhydrous pyridine. After complete addition of the tosylchloride, the reaction mixture was stirred for additional 16 h. About 2 h after the addition was completed, a white precipitate started to form. This white solid was filtered off, washed three times with 100 ml chloroform, and finally dried for several days at h.v.. The product was obtained in good yields as a colourless amorphous powder (3.80 g, quantitative); colourless blocks of (I) suitable for X-ray diffraction were collected directly from the reaction mixture. 1H NMR (d6-DMSO): δ = 2.28 (s, 3 H), 6.41 (s, 2 H), 7.10 (d, J = 7.98 Hz, 2 H), 7.47 (d, J = 7.95 Hz, 2 H), 7.90–7.99 (m, 4 H), 8.20 (t, J = 7.05 Hz, 2 H), 8.67 (t, J = 7.68 Hz, 1 H), 9.09 (d, J = 5.80 Hz, 2 H). p.p.m.. IR: ν = 3398 (br), 3124, 3087, 3037, 2980, 2935, 1781, 1729, 1627, 1485, 1404, 1361, 1331, 1300, 1268, 1206, 1168, 1116, 1089, 1067, 1031, 1008, 951, 826, 801, 777, 728, 680, 632, 587, 565, 529 cm-1.

Refinement top

The H atoms were placed in calculated positions and refined as riding.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz (1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of (I), with displacement ellipsoids drawn at 50% probability level (H atoms omitted for clarity).
[Figure 2] Fig. 2. Aromatic interactions observed within the crystal lattice of (I).
[Figure 3] Fig. 3. The crystal packing of (I) viewed parallel to the bc plane.
1-(Phthalimidomethyl)pyridinium p-toluenesulfonate top
Crystal data top
C14H11N2O2+·C7H7O3SF(000) = 856
Mr = 410.43Dx = 1.481 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3297 reflections
a = 7.6944 (5) Åθ = 2.4–26.4°
b = 33.626 (2) ŵ = 0.21 mm1
c = 7.9426 (5) ÅT = 90 K
β = 116.416 (1)°Block, colourless
V = 1840.5 (2) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
4482 independent reflections
Radiation source: fine-focus sealed tube3753 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 512 pixels mm-1θmax = 28.1°, θmin = 2.4°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
k = 4244
Tmin = 0.939, Tmax = 0.958l = 1010
19080 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0508P)2 + 1.1529P]
where P = (Fo2 + 2Fc2)/3
4482 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C14H11N2O2+·C7H7O3SV = 1840.5 (2) Å3
Mr = 410.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6944 (5) ŵ = 0.21 mm1
b = 33.626 (2) ÅT = 90 K
c = 7.9426 (5) Å0.30 × 0.25 × 0.20 mm
β = 116.416 (1)°
Data collection top
Bruker APEX CCD
diffractometer
4482 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
3753 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.958Rint = 0.049
19080 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.12Δρmax = 0.61 e Å3
4482 reflectionsΔρmin = 0.38 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.71561 (7)0.151380 (15)0.83629 (7)0.01495 (13)
O11.0063 (2)0.07297 (5)0.3896 (2)0.0232 (3)
O20.4402 (2)0.01341 (5)0.3092 (2)0.0247 (4)
O30.8408 (2)0.15516 (5)0.7439 (2)0.0209 (3)
O40.6566 (2)0.11048 (4)0.8427 (2)0.0232 (3)
O50.7929 (2)0.17090 (5)1.0188 (2)0.0217 (3)
N10.7117 (2)0.05127 (5)0.3668 (2)0.0173 (4)
N20.5370 (2)0.11140 (5)0.3597 (2)0.0158 (4)
C10.8823 (3)0.04795 (6)0.3432 (3)0.0169 (4)
C20.8696 (3)0.00828 (6)0.2554 (3)0.0159 (4)
C30.9997 (3)0.01049 (6)0.2060 (3)0.0191 (4)
H31.11660.00200.22190.023*
C40.9513 (3)0.04884 (7)0.1314 (3)0.0228 (5)
H41.03670.06280.09520.027*
C50.7805 (3)0.06681 (7)0.1096 (3)0.0239 (5)
H50.75230.09300.05980.029*
C60.6488 (3)0.04768 (7)0.1584 (3)0.0217 (4)
H60.53150.06010.14230.026*
C70.6972 (3)0.00982 (6)0.2314 (3)0.0170 (4)
C80.5931 (3)0.01743 (6)0.3028 (3)0.0179 (4)
C90.6823 (3)0.08173 (6)0.4785 (3)0.0204 (4)
H9A0.80710.09530.55470.025*
H9B0.63790.06940.56570.025*
C100.3571 (3)0.11045 (6)0.3473 (3)0.0177 (4)
H100.32450.09100.41500.021*
C110.2198 (3)0.13761 (6)0.2367 (3)0.0182 (4)
H110.09170.13670.22570.022*
C120.2708 (3)0.16635 (6)0.1417 (3)0.0193 (4)
H120.17810.18550.06570.023*
C130.4584 (3)0.16703 (6)0.1581 (3)0.0192 (4)
H130.49520.18670.09420.023*
C140.5902 (3)0.13900 (6)0.2678 (3)0.0185 (4)
H140.71840.13900.27900.022*
C150.4978 (3)0.17744 (6)0.6922 (3)0.0147 (4)
C160.3230 (3)0.16559 (6)0.6887 (3)0.0170 (4)
H160.31960.14300.75910.020*
C170.1535 (3)0.18648 (6)0.5831 (3)0.0180 (4)
H170.03550.17830.58320.022*
C180.1543 (3)0.21947 (6)0.4764 (3)0.0169 (4)
C190.0316 (3)0.24117 (7)0.3577 (3)0.0221 (5)
H19A0.00260.26520.30490.033*
H19B0.09570.24860.43570.033*
H19C0.11760.22380.25530.033*
C200.3304 (3)0.23071 (6)0.4797 (3)0.0184 (4)
H200.33360.25290.40690.022*
C210.5012 (3)0.21025 (6)0.5872 (3)0.0167 (4)
H210.61980.21860.58890.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0132 (2)0.0163 (2)0.0136 (2)0.00043 (18)0.00446 (18)0.00117 (18)
O10.0220 (8)0.0201 (8)0.0253 (8)0.0060 (6)0.0086 (7)0.0012 (6)
O20.0170 (7)0.0361 (9)0.0229 (8)0.0006 (7)0.0105 (6)0.0016 (7)
O30.0184 (7)0.0250 (8)0.0212 (8)0.0008 (6)0.0106 (6)0.0010 (6)
O40.0203 (8)0.0182 (8)0.0288 (8)0.0001 (6)0.0087 (7)0.0030 (6)
O50.0183 (7)0.0290 (8)0.0130 (7)0.0020 (6)0.0027 (6)0.0037 (6)
N10.0168 (8)0.0177 (9)0.0160 (8)0.0022 (7)0.0060 (7)0.0003 (7)
N20.0154 (8)0.0182 (8)0.0110 (8)0.0043 (7)0.0035 (7)0.0007 (6)
C10.0165 (10)0.0187 (10)0.0135 (9)0.0029 (8)0.0049 (8)0.0032 (7)
C20.0181 (10)0.0150 (9)0.0120 (9)0.0015 (8)0.0044 (8)0.0032 (7)
C30.0207 (10)0.0221 (11)0.0144 (10)0.0022 (8)0.0077 (8)0.0034 (8)
C40.0315 (12)0.0237 (11)0.0137 (10)0.0088 (9)0.0105 (9)0.0037 (8)
C50.0371 (13)0.0169 (10)0.0133 (10)0.0018 (9)0.0074 (9)0.0002 (8)
C60.0262 (11)0.0208 (11)0.0149 (10)0.0056 (9)0.0063 (9)0.0012 (8)
C70.0158 (9)0.0192 (10)0.0132 (9)0.0000 (8)0.0041 (8)0.0036 (7)
C80.0167 (10)0.0220 (10)0.0119 (9)0.0004 (8)0.0036 (8)0.0047 (8)
C90.0212 (10)0.0241 (11)0.0129 (9)0.0076 (8)0.0047 (8)0.0020 (8)
C100.0193 (10)0.0194 (10)0.0144 (9)0.0002 (8)0.0076 (8)0.0026 (8)
C110.0148 (9)0.0223 (10)0.0149 (10)0.0009 (8)0.0044 (8)0.0050 (8)
C120.0198 (10)0.0186 (10)0.0142 (10)0.0044 (8)0.0026 (8)0.0026 (8)
C130.0247 (11)0.0171 (10)0.0152 (10)0.0006 (8)0.0083 (8)0.0006 (8)
C140.0177 (10)0.0207 (10)0.0163 (10)0.0010 (8)0.0068 (8)0.0031 (8)
C150.0139 (9)0.0166 (9)0.0102 (9)0.0000 (7)0.0022 (7)0.0026 (7)
C160.0199 (10)0.0185 (10)0.0123 (9)0.0001 (8)0.0068 (8)0.0001 (7)
C170.0163 (9)0.0213 (10)0.0158 (10)0.0002 (8)0.0067 (8)0.0027 (8)
C180.0205 (10)0.0159 (9)0.0107 (9)0.0013 (8)0.0038 (8)0.0042 (7)
C190.0207 (11)0.0228 (11)0.0184 (10)0.0049 (8)0.0047 (9)0.0019 (8)
C200.0233 (10)0.0155 (10)0.0139 (9)0.0002 (8)0.0061 (8)0.0010 (7)
C210.0162 (9)0.0188 (10)0.0134 (9)0.0037 (8)0.0050 (8)0.0035 (7)
Geometric parameters (Å, º) top
S1—O31.4531 (15)C9—H9B0.9900
S1—O51.4556 (15)C10—C111.377 (3)
S1—O41.4562 (16)C10—H100.9500
S1—C151.783 (2)C11—C121.386 (3)
O1—C11.201 (3)C11—H110.9500
O2—C81.208 (2)C12—C131.391 (3)
N1—C81.405 (3)C12—H120.9500
N1—C11.410 (3)C13—C141.375 (3)
N1—C91.437 (3)C13—H130.9500
N2—C101.343 (3)C14—H140.9500
N2—C141.352 (3)C15—C211.390 (3)
N2—C91.482 (3)C15—C161.391 (3)
C1—C21.488 (3)C16—C171.387 (3)
C2—C31.380 (3)C16—H160.9500
C2—C71.393 (3)C17—C181.397 (3)
C3—C41.399 (3)C17—H170.9500
C3—H30.9500C18—C201.396 (3)
C4—C51.386 (3)C18—C191.506 (3)
C4—H40.9500C19—H19A0.9800
C5—C61.393 (3)C19—H19B0.9800
C5—H50.9500C19—H19C0.9800
C6—C71.380 (3)C20—C211.390 (3)
C6—H60.9500C20—H200.9500
C7—C81.486 (3)C21—H210.9500
C9—H9A0.9900
O3—S1—O5113.25 (9)H9A—C9—H9B108.0
O3—S1—O4112.78 (9)N2—C10—C11120.30 (19)
O5—S1—O4112.75 (10)N2—C10—H10119.8
O3—S1—C15106.13 (9)C11—C10—H10119.8
O5—S1—C15105.58 (9)C10—C11—C12119.12 (19)
O4—S1—C15105.53 (9)C10—C11—H11120.4
C8—N1—C1112.38 (17)C12—C11—H11120.4
C8—N1—C9123.06 (18)C11—C12—C13119.60 (19)
C1—N1—C9123.35 (18)C11—C12—H12120.2
C10—N2—C14121.75 (18)C13—C12—H12120.2
C10—N2—C9119.46 (18)C14—C13—C12119.4 (2)
C14—N2—C9118.78 (17)C14—C13—H13120.3
O1—C1—N1124.31 (19)C12—C13—H13120.3
O1—C1—C2130.5 (2)N2—C14—C13119.82 (19)
N1—C1—C2105.22 (17)N2—C14—H14120.1
C3—C2—C7121.9 (2)C13—C14—H14120.1
C3—C2—C1129.71 (19)C21—C15—C16119.42 (18)
C7—C2—C1108.40 (18)C21—C15—S1120.78 (15)
C2—C3—C4116.9 (2)C16—C15—S1119.78 (15)
C2—C3—H3121.6C17—C16—C15120.50 (19)
C4—C3—H3121.6C17—C16—H16119.8
C5—C4—C3120.9 (2)C15—C16—H16119.8
C5—C4—H4119.5C16—C17—C18120.81 (19)
C3—C4—H4119.5C16—C17—H17119.6
C4—C5—C6122.1 (2)C18—C17—H17119.6
C4—C5—H5119.0C20—C18—C17118.02 (19)
C6—C5—H5119.0C20—C18—C19121.63 (19)
C7—C6—C5116.7 (2)C17—C18—C19120.33 (19)
C7—C6—H6121.7C18—C19—H19A109.5
C5—C6—H6121.7C18—C19—H19B109.5
C6—C7—C2121.6 (2)H19A—C19—H19B109.5
C6—C7—C8129.7 (2)C18—C19—H19C109.5
C2—C7—C8108.70 (18)H19A—C19—H19C109.5
O2—C8—N1124.3 (2)H19B—C19—H19C109.5
O2—C8—C7130.4 (2)C21—C20—C18121.47 (19)
N1—C8—C7105.31 (17)C21—C20—H20119.3
N1—C9—N2111.61 (16)C18—C20—H20119.3
N1—C9—H9A109.3C20—C21—C15119.78 (19)
N2—C9—H9A109.3C20—C21—H21120.1
N1—C9—H9B109.3C15—C21—H21120.1
N2—C9—H9B109.3
C8—N1—C1—O1179.12 (19)C1—N1—C9—N2108.7 (2)
C9—N1—C1—O111.4 (3)C10—N2—C9—N1104.0 (2)
C8—N1—C1—C20.2 (2)C14—N2—C9—N176.5 (2)
C9—N1—C1—C2167.94 (17)C14—N2—C10—C111.0 (3)
O1—C1—C2—C30.9 (4)C9—N2—C10—C11179.58 (18)
N1—C1—C2—C3178.3 (2)N2—C10—C11—C121.3 (3)
O1—C1—C2—C7179.2 (2)C10—C11—C12—C130.6 (3)
N1—C1—C2—C70.1 (2)C11—C12—C13—C140.4 (3)
C7—C2—C3—C40.4 (3)C10—N2—C14—C130.0 (3)
C1—C2—C3—C4177.63 (19)C9—N2—C14—C13179.44 (18)
C2—C3—C4—C50.2 (3)C12—C13—C14—N20.7 (3)
C3—C4—C5—C60.7 (3)O3—S1—C15—C2130.90 (19)
C4—C5—C6—C70.5 (3)O5—S1—C15—C2189.57 (17)
C5—C6—C7—C20.2 (3)O4—S1—C15—C21150.81 (16)
C5—C6—C7—C8177.4 (2)O3—S1—C15—C16150.97 (16)
C3—C2—C7—C60.6 (3)O5—S1—C15—C1688.55 (17)
C1—C2—C7—C6177.78 (19)O4—S1—C15—C1631.06 (19)
C3—C2—C7—C8178.36 (18)C21—C15—C16—C170.7 (3)
C1—C2—C7—C80.1 (2)S1—C15—C16—C17177.49 (15)
C1—N1—C8—O2179.69 (19)C15—C16—C17—C180.8 (3)
C9—N1—C8—O211.9 (3)C16—C17—C18—C200.1 (3)
C1—N1—C8—C70.2 (2)C16—C17—C18—C19178.17 (19)
C9—N1—C8—C7168.02 (17)C17—C18—C20—C210.8 (3)
C6—C7—C8—O22.3 (4)C19—C18—C20—C21179.02 (19)
C2—C7—C8—O2179.7 (2)C18—C20—C21—C151.0 (3)
C6—C7—C8—N1177.6 (2)C16—C15—C21—C200.2 (3)
C2—C7—C8—N10.2 (2)S1—C15—C21—C20178.34 (15)
C8—N1—C9—N284.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.952.703.531 (2)147
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H11N2O2+·C7H7O3S
Mr410.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)90
a, b, c (Å)7.6944 (5), 33.626 (2), 7.9426 (5)
β (°) 116.416 (1)
V3)1840.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.939, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
19080, 4482, 3753
Rint0.049
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.124, 1.12
No. of reflections4482
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.38

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz (1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.952.703.531 (2)147
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors gratefully acknowledge the support of the National Science Foundation (CHE-0604527) and Molecular Insight Pharmaceuticals Inc.

References

First citationAl-Madhoun, A. S., Johnsamuel, J., Yan, J., Ji, W., Wang, J., Zhuo, J.-C., Lunato, A. J., Woollard, J. E., Hawk, A. E., Cosquer, G. Y., Blue, T. E., Eriksson, S. & Tjarks, W. (2002). J. Med. Chem. 45, 4018–4028.  Web of Science CrossRef PubMed CAS Google Scholar
First citationArner, E. S. J. & Eriksson, S. (1995). Pharmacol. Ther. 67, 155–186.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBello, L. J. (1974). Exp. Cell Res. 89, 263–274.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCelen, S., de Groot, T., Balzarini, J., Vunckx, K., Terwinghe, C., Vermaelen, P., Van Berckelaer, L., Vanbilloen, H., Nuyts, J., Mortelmans, L., Verbruggen, A. & Bormans, G. (2007). Nucl. Med. Biol. 34, 283–291.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEriksson, S., Munch-Petersen, B., Johansson, K. & Eklund, H. (2002). Cell. Mol. Life Sci. 59, 1327–1346.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, L., Babich, J., Eckelman, W. C. & Zubieta, J. (2005). Inorg. Chem. 44, 2198–2209.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWelin, M., Kosinska, U., Mikkelsen, N.-E., Carnrot, C., Zhu, C., Wang, L., Eriksson, S., Munch-Petersen, B. & Eklund, H. (2004). Proc. Natl Acad. Sci. 101, 17970–17975.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds