metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­aqua­(2,2′-bi­pyridine)(5-nitro­isophthal­ato-κO)nickel(II) monohydrate

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: yllctu@yahoo.com.cn

(Received 9 November 2008; accepted 17 November 2008; online 10 December 2008)

In the title compound, [Ni(C8H3NO6)(C10H8N2)(H2O)3]·H2O, the NiII cation is six-coordinated by a chelating 2,2′-bipyridine ligand, one carboxyl­ate O atom from a 5-nitro­isophthalate dianion and three water mol­ecules, with a slightly distorted cis-NiN2O4 octa­hedral geometry. The neutral complex is isolated, in contrast to coordination polymers formed by MnII, CoII and CuII with the same ligand set, but forms an extensive network of O—H⋯O hydrogen bonds between the coordinated and uncoordinated water mol­ecules and carboxyl­ate groups of the 5-nitro­isophthalate ions.

Related literature

For the related coordination polymers containing CoII, MnII and CuII, see: Xiao et al. (2005[Xiao, H. P., Li, X.-H. & Cheng, Y.-Q. (2005). Acta Cryst. E61, m158-m159.]); Xie et al. (2005[Xie, G., Zeng, M.-H., Chen, S.-P. & Gao, S.-L. (2005). Acta Cryst. E61, m2273-m2275.], 2006[Xie, G., Zeng, M.-H., Chen, S.-P. & Gao, S.-L. (2006). Acta Cryst. E62, m397-m399.]), respectively. For background, see: Kim et al. (2001[Kim, Y., Lee, E. & Jung, D. Y. (2001). Chem. Mater. 13, 2684-2689.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H3NO6)(C10H8N2)(H2O)3]·H2O

  • Mr = 496.05

  • Triclinic, [P \overline 1]

  • a = 7.4867 (10) Å

  • b = 10.717 (3) Å

  • c = 12.773 (2) Å

  • α = 89.798 (10)°

  • β = 87.89 (2)°

  • γ = 74.675 (10)°

  • V = 987.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 293 (2) K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.885, Tmax = 0.921

  • 5649 measured reflections

  • 3823 independent reflections

  • 3271 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.122

  • S = 1.01

  • 3823 reflections

  • 314 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.99 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 2.051 (2)
Ni1—O2W 2.079 (2)
Ni1—O1W 2.088 (2)
Ni1—O3W 2.142 (2)
Ni1—N2 2.097 (2)
Ni1—N3 2.100 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2 0.81 (3) 2.00 (3) 2.727 (3) 150 (5)
O1W—H2W⋯O4i 0.82 (4) 1.96 (5) 2.715 (3) 154 (4)
O2W—H3W⋯O4Wii 0.82 (3) 1.82 (4) 2.614 (4) 166 (4)
O2W—H4W⋯O4iii 0.82 (4) 1.96 (4) 2.757 (3) 164 (4)
O3W—H5W⋯O4Wiv 0.82 (4) 2.42 (2) 3.185 (7) 156 (5)
O3W—H6W⋯O4v 0.82 (3) 1.97 (2) 2.735 (3) 155 (4)
O4W—H7W⋯O2vi 0.81 (4) 1.91 (2) 2.697 (4) 161 (5)
O4W—H8W⋯O3vii 0.81 (3) 1.98 (4) 2.639 (4) 138 (5)
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y+1, -z+1; (iii) x+1, y-1, z; (iv) x, y-1, z+1; (v) -x+1, -y+1, -z+2; (vi) -x+1, -y+1, -z+1; (vii) x+1, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, carboxylic acids have been widely used in materials science as polydentate ligands which can coordinate to transition-metal or rare-earth cations to yield complexes with interesting or useful properties. For example, Kim et al. (2001) have focused on the syntheses of transition-metal complexes containing benzene carboxylate and rigid aromatic pyridine ligands in order to study their electronic conductivity and magnetic properties. The importance of transition-metal dicarboxylate complexes motivated us to pursue synthetic strategies for these compounds, using 5-nitroisophthalic acid as a polydentate ligand and we now report the synthesis and structure of the title compound, (I) (Fig. 1).

The NiII cation in (I) is hexa-coordinated by a chelating 2,2'-bipyridine ligand, one carboxylate O atom from a 5-nitroisophthalate dianion and three water molecules, with a slightly distorted cis-NiN2O4 octahedral geometry (Table 1). The neutral complex is isolated, in contrast to coordination polymers formed by MnII, CoII and CuII with the same ligand set, but forms an extensive network of O—H···O hydrogen bonds (Table 2) between the coordinated and uncoordinated water molecules and carboxylate groups of the 5-nitroisophthalate ions.

Related literature top

For the related coordination polymers containing CoII, MnII and CuII, see: Xiao et al. (2005); Xie et al. (2005; Xie et al., 2006), respectively. For background, see: Kim et al. (2001).

Experimental top

A mixture of nickel dichloride (0.5 mmol), 2,2'-bipyridine (0.5 mmol), and 5-nitroisophthalic acid (0.5 mmol) in H2O (8 ml) and ethanol (8 ml) was sealed in a 25-ml Teflon-lined stainless steel autoclave and heated to 413 K for three days. Green blocks of (I) were obtained after cooling to room temperature with a yield of 27%.

Refinement top

The H atoms of the water molecule were located from difference density maps and were refined with distance restraints of H···H = 1.38 (2) Å, O—) = 0.88 (2) Å, and with a fixed Uiso of 0.80 Å2. All other H atoms were placed in calculated positions with a C—H bond distance of 0.93 Å and Uiso(H) = 1.2Ueq of the carrier atom.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing 30% probability displacement ellipsoids for the non-hydrogen atoms.
Triaqua(2,2'-bipyridine)(5-nitroisophthalato-κO)nickel(II) monohydrate top
Crystal data top
[Ni(C8H3NO6)(C10H8N2)(H2O)3]·H2OZ = 2
Mr = 496.05F(000) = 512
Triclinic, P1Dx = 1.668 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4867 (10) ÅCell parameters from 3823 reflections
b = 10.717 (3) Åθ = 1.6–26.0°
c = 12.773 (2) ŵ = 1.05 mm1
α = 89.798 (10)°T = 293 K
β = 87.89 (2)°Block, green
γ = 74.675 (10)°0.12 × 0.10 × 0.08 mm
V = 987.7 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3823 independent reflections
Radiation source: fine-focus sealed tube3271 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 89
Tmin = 0.885, Tmax = 0.921k = 1311
5649 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difmap and geom
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.071P)2 + 0.9983P]
where P = (Fo2 + 2Fc2)/3
3823 reflections(Δ/σ)max < 0.001
314 parametersΔρmax = 0.99 e Å3
12 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Ni(C8H3NO6)(C10H8N2)(H2O)3]·H2Oγ = 74.675 (10)°
Mr = 496.05V = 987.7 (3) Å3
Triclinic, P1Z = 2
a = 7.4867 (10) ÅMo Kα radiation
b = 10.717 (3) ŵ = 1.05 mm1
c = 12.773 (2) ÅT = 293 K
α = 89.798 (10)°0.12 × 0.10 × 0.08 mm
β = 87.89 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3823 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3271 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.921Rint = 0.016
5649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04312 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.99 e Å3
3823 reflectionsΔρmin = 0.73 e Å3
314 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.72908 (5)0.02881 (3)0.78571 (3)0.02430 (16)
C10.8232 (5)0.3096 (3)0.8659 (2)0.0303 (7)
H10.77010.27380.92960.036*
C20.8972 (5)0.4404 (3)0.8591 (3)0.0371 (8)
H20.89030.49310.91630.044*
C30.9816 (5)0.4922 (3)0.7667 (3)0.0385 (8)
H31.03680.58070.76120.046*
C40.9848 (5)0.4139 (3)0.6820 (3)0.0321 (7)
H41.04240.44800.61870.038*
C50.9009 (4)0.2836 (3)0.6926 (2)0.0227 (6)
C60.8764 (4)0.1940 (3)0.6036 (2)0.0254 (6)
C70.7338 (5)0.0090 (3)0.5475 (3)0.0360 (8)
H70.66330.09270.56280.043*
C80.7884 (6)0.0224 (4)0.4454 (3)0.0476 (9)
H80.75240.03760.39220.057*
C90.8975 (7)0.1445 (4)0.4233 (3)0.0532 (11)
H90.94060.16800.35510.064*
C100.9418 (6)0.2309 (4)0.5028 (3)0.0429 (9)
H101.01570.31410.48930.052*
C110.5174 (4)0.2464 (3)0.8072 (3)0.0296 (7)
C120.4966 (4)0.3864 (3)0.7871 (2)0.0245 (6)
C130.4091 (4)0.4774 (3)0.8608 (2)0.0244 (6)
H130.36750.45060.92430.029*
C140.3821 (4)0.6079 (3)0.8421 (2)0.0218 (6)
C150.2887 (4)0.7042 (3)0.9250 (2)0.0229 (6)
C160.4381 (4)0.6470 (3)0.7464 (2)0.0242 (6)
H160.41680.73450.73110.029*
C170.5258 (4)0.5548 (3)0.6739 (2)0.0237 (6)
C180.5605 (4)0.4251 (3)0.6923 (2)0.0267 (6)
H180.62500.36470.64290.032*
H1W0.394 (6)0.0433 (19)0.814 (4)0.080*
H2W0.430 (7)0.089 (3)0.824 (3)0.080*
H3W1.002 (7)0.0536 (18)0.815 (4)0.080*
H4W1.071 (6)0.077 (3)0.827 (3)0.080*
H5W0.784 (5)0.065 (3)0.979 (4)0.080*
H6W0.696 (6)0.062 (2)0.980 (4)0.080*
H7W0.857 (4)0.785 (5)0.129 (4)0.080*
H8W1.005 (6)0.792 (5)0.064 (2)0.080*
N10.5843 (4)0.5975 (3)0.5725 (2)0.0317 (6)
N20.7764 (3)0.0739 (2)0.62575 (19)0.0254 (5)
N30.8242 (3)0.2316 (2)0.78473 (18)0.0236 (5)
O10.6531 (3)0.16736 (19)0.76279 (17)0.0296 (5)
O20.3983 (4)0.2176 (2)0.8663 (3)0.0569 (8)
O30.2273 (3)0.6637 (2)1.00532 (18)0.0380 (6)
O40.2779 (3)0.82113 (19)0.90681 (17)0.0294 (5)
O50.5189 (4)0.7083 (2)0.54771 (19)0.0495 (7)
O60.6974 (4)0.5196 (2)0.51729 (18)0.0413 (6)
O1W0.4496 (3)0.0279 (2)0.79179 (19)0.0316 (5)
O2W1.0016 (3)0.0185 (2)0.79477 (19)0.0318 (5)
O3W0.7027 (4)0.0088 (2)0.95279 (18)0.0391 (6)
O4W0.9500 (5)0.8091 (4)0.1199 (5)0.115 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0280 (2)0.0187 (2)0.0255 (2)0.00530 (16)0.00210 (15)0.00138 (14)
C10.0380 (18)0.0296 (16)0.0247 (15)0.0118 (14)0.0005 (13)0.0040 (12)
C20.043 (2)0.0311 (18)0.0399 (19)0.0143 (15)0.0094 (15)0.0133 (14)
C30.043 (2)0.0190 (15)0.051 (2)0.0035 (14)0.0063 (16)0.0027 (14)
C40.0348 (17)0.0220 (15)0.0365 (17)0.0031 (13)0.0035 (14)0.0048 (13)
C50.0252 (15)0.0196 (14)0.0234 (14)0.0059 (11)0.0000 (11)0.0005 (11)
C60.0297 (16)0.0206 (14)0.0260 (15)0.0072 (12)0.0024 (12)0.0012 (11)
C70.046 (2)0.0288 (17)0.0308 (17)0.0059 (15)0.0046 (14)0.0077 (13)
C80.072 (3)0.043 (2)0.0282 (18)0.016 (2)0.0062 (17)0.0108 (15)
C90.086 (3)0.051 (2)0.0237 (17)0.023 (2)0.0098 (18)0.0020 (16)
C100.064 (2)0.0338 (18)0.0284 (17)0.0100 (17)0.0155 (16)0.0061 (14)
C110.0266 (16)0.0163 (14)0.0451 (18)0.0048 (12)0.0056 (14)0.0013 (13)
C120.0228 (14)0.0147 (13)0.0349 (16)0.0032 (11)0.0015 (12)0.0003 (11)
C130.0242 (15)0.0192 (14)0.0292 (15)0.0053 (11)0.0028 (12)0.0023 (11)
C140.0218 (14)0.0180 (14)0.0256 (14)0.0053 (11)0.0004 (11)0.0000 (11)
C150.0230 (14)0.0168 (13)0.0276 (15)0.0030 (11)0.0022 (11)0.0005 (11)
C160.0289 (15)0.0158 (13)0.0284 (15)0.0069 (11)0.0034 (12)0.0014 (11)
C170.0274 (15)0.0230 (14)0.0210 (14)0.0069 (12)0.0013 (11)0.0001 (11)
C180.0287 (15)0.0210 (14)0.0296 (15)0.0053 (12)0.0009 (12)0.0049 (12)
N10.0414 (16)0.0322 (15)0.0241 (13)0.0147 (12)0.0001 (11)0.0007 (11)
N20.0306 (13)0.0224 (12)0.0237 (12)0.0079 (10)0.0006 (10)0.0018 (10)
N30.0288 (13)0.0186 (12)0.0234 (12)0.0066 (10)0.0006 (10)0.0007 (9)
O10.0319 (12)0.0136 (10)0.0401 (12)0.0018 (8)0.0103 (10)0.0012 (8)
O20.0483 (16)0.0202 (12)0.100 (2)0.0103 (11)0.0408 (16)0.0044 (13)
O30.0522 (15)0.0225 (11)0.0353 (12)0.0055 (10)0.0178 (11)0.0009 (9)
O40.0399 (12)0.0151 (10)0.0314 (11)0.0049 (9)0.0044 (9)0.0014 (8)
O50.080 (2)0.0305 (14)0.0337 (13)0.0095 (13)0.0069 (13)0.0105 (10)
O60.0484 (15)0.0429 (14)0.0293 (12)0.0085 (12)0.0131 (11)0.0061 (10)
O1W0.0281 (12)0.0221 (11)0.0443 (13)0.0073 (9)0.0061 (10)0.0013 (10)
O2W0.0297 (12)0.0237 (11)0.0424 (13)0.0070 (9)0.0075 (10)0.0023 (10)
O3W0.0660 (18)0.0267 (12)0.0248 (11)0.0132 (12)0.0003 (11)0.0043 (9)
O4W0.0426 (19)0.079 (3)0.227 (6)0.0297 (18)0.054 (3)0.107 (3)
Geometric parameters (Å, º) top
Ni1—O12.051 (2)C11—O21.246 (4)
Ni1—O2W2.079 (2)C11—O11.256 (4)
Ni1—O1W2.088 (2)C11—C121.490 (4)
Ni1—O3W2.142 (2)C12—C131.375 (4)
Ni1—N22.097 (2)C12—C181.387 (4)
Ni1—N32.100 (2)C13—C141.380 (4)
C1—N31.331 (4)C13—H130.9300
C1—C21.365 (5)C14—C161.377 (4)
C1—H10.9300C14—C151.499 (4)
C2—C31.366 (5)C15—O31.232 (4)
C2—H20.9300C15—O41.256 (3)
C3—C41.371 (5)C16—C171.372 (4)
C3—H30.9300C16—H160.9300
C4—C51.376 (4)C17—C181.366 (4)
C4—H40.9300C17—N11.463 (4)
C5—N31.345 (4)C18—H180.9300
C5—C61.471 (4)N1—O51.205 (4)
C6—N21.331 (4)N1—O61.224 (3)
C6—C101.382 (4)O1W—H1W0.81 (3)
C7—N21.326 (4)O1W—H2W0.82 (4)
C7—C81.369 (5)O2W—H3W0.82 (3)
C7—H70.9300O2W—H4W0.82 (4)
C8—C91.371 (6)O3W—H5W0.82 (4)
C8—H80.9300O3W—H6W0.82 (3)
C9—C101.361 (5)O4W—H7W0.81 (4)
C9—H90.9300O4W—H8W0.81 (3)
C10—H100.9300
O1—Ni1—O2W88.23 (9)O2—C11—O1125.6 (3)
O1—Ni1—O1W89.39 (9)O2—C11—C12117.3 (3)
O2W—Ni1—O1W173.81 (9)O1—C11—C12117.1 (3)
O1—Ni1—N294.35 (9)C13—C12—C18120.0 (3)
O2W—Ni1—N289.63 (10)C13—C12—C11120.1 (3)
O1W—Ni1—N296.25 (10)C18—C12—C11119.9 (3)
O1—Ni1—N3170.92 (9)C14—C13—C12121.1 (3)
O2W—Ni1—N389.18 (9)C14—C13—H13119.5
O1W—Ni1—N394.02 (9)C12—C13—H13119.5
N2—Ni1—N376.92 (9)C13—C14—C16119.1 (3)
O1—Ni1—O3W93.00 (9)C13—C14—C15119.5 (3)
O2W—Ni1—O3W88.23 (10)C16—C14—C15121.3 (3)
O1W—Ni1—O3W86.19 (10)O3—C15—O4124.8 (3)
N2—Ni1—O3W172.27 (9)O3—C15—C14118.2 (2)
N3—Ni1—O3W95.62 (9)O4—C15—C14117.1 (3)
N3—C1—C2122.5 (3)C17—C16—C14119.0 (3)
N3—C1—H1118.8C17—C16—H16120.5
C2—C1—H1118.8C14—C16—H16120.5
C1—C2—C3118.7 (3)C18—C17—C16122.9 (3)
C1—C2—H2120.7C18—C17—N1118.6 (3)
C3—C2—H2120.6C16—C17—N1118.5 (3)
C2—C3—C4120.0 (3)C17—C18—C12117.8 (3)
C2—C3—H3120.0C17—C18—H18121.1
C4—C3—H3120.0C12—C18—H18121.1
C3—C4—C5118.5 (3)O5—N1—O6123.2 (3)
C3—C4—H4120.8O5—N1—C17118.1 (3)
C5—C4—H4120.8O6—N1—C17118.7 (3)
N3—C5—C4121.7 (3)C7—N2—C6118.3 (3)
N3—C5—C6115.5 (2)C7—N2—Ni1125.9 (2)
C4—C5—C6122.7 (3)C6—N2—Ni1115.4 (2)
N2—C6—C10121.4 (3)C1—N3—C5118.7 (3)
N2—C6—C5114.9 (3)C1—N3—Ni1126.6 (2)
C10—C6—C5123.5 (3)C5—N3—Ni1114.67 (18)
N2—C7—C8123.3 (3)C11—O1—Ni1125.67 (19)
N2—C7—H7118.4Ni1—O1W—H1W105 (4)
C8—C7—H7118.4Ni1—O1W—H2W113 (4)
C9—C8—C7118.3 (3)H1W—O1W—H2W116 (3)
C9—C8—H8120.8Ni1—O2W—H3W109 (3)
C7—C8—H8120.8Ni1—O2W—H4W116 (4)
C10—C9—C8119.0 (3)H3W—O2W—H4W113 (3)
C10—C9—H9120.5Ni1—O3W—H5W109 (3)
C8—C9—H9120.5Ni1—O3W—H6W120 (4)
C9—C10—C6119.6 (3)H5W—O3W—H6W111 (3)
C9—C10—H10120.2H7W—O4W—H8W116 (3)
C6—C10—H10120.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O20.81 (3)2.00 (3)2.727 (3)150 (5)
O1W—H2W···O4i0.82 (4)1.96 (5)2.715 (3)154 (4)
O2W—H3W···O4Wii0.82 (3)1.82 (4)2.614 (4)166 (4)
O2W—H4W···O4iii0.82 (4)1.96 (4)2.757 (3)164 (4)
O3W—H5W···O4Wiv0.82 (4)2.42 (2)3.185 (7)156 (5)
O3W—H6W···O4v0.82 (3)1.97 (2)2.735 (3)155 (4)
O4W—H7W···O2vi0.81 (4)1.91 (2)2.697 (4)161 (5)
O4W—H8W···O3vii0.81 (3)1.98 (4)2.639 (4)138 (5)
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z+1; (iii) x+1, y1, z; (iv) x, y1, z+1; (v) x+1, y+1, z+2; (vi) x+1, y+1, z+1; (vii) x+1, y, z1.

Experimental details

Crystal data
Chemical formula[Ni(C8H3NO6)(C10H8N2)(H2O)3]·H2O
Mr496.05
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4867 (10), 10.717 (3), 12.773 (2)
α, β, γ (°)89.798 (10), 87.89 (2), 74.675 (10)
V3)987.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.885, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
5649, 3823, 3271
Rint0.016
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.122, 1.01
No. of reflections3823
No. of parameters314
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.99, 0.73

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O12.051 (2)Ni1—O3W2.142 (2)
Ni1—O2W2.079 (2)Ni1—N22.097 (2)
Ni1—O1W2.088 (2)Ni1—N32.100 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O20.81 (3)2.00 (3)2.727 (3)150 (5)
O1W—H2W···O4i0.82 (4)1.96 (5)2.715 (3)154 (4)
O2W—H3W···O4Wii0.82 (3)1.82 (4)2.614 (4)166 (4)
O2W—H4W···O4iii0.82 (4)1.96 (4)2.757 (3)164 (4)
O3W—H5W···O4Wiv0.82 (4)2.42 (2)3.185 (7)156 (5)
O3W—H6W···O4v0.82 (3)1.97 (2)2.735 (3)155 (4)
O4W—H7W···O2vi0.81 (4)1.91 (2)2.697 (4)161 (5)
O4W—H8W···O3vii0.81 (3)1.98 (4)2.639 (4)138 (5)
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z+1; (iii) x+1, y1, z; (iv) x, y1, z+1; (v) x+1, y+1, z+2; (vi) x+1, y+1, z+1; (vii) x+1, y, z1.
 

Acknowledgements

The authors thank the NSFC (grant No. 20501011) and Liaocheng University for financial support (grant No. X071011).

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKim, Y., Lee, E. & Jung, D. Y. (2001). Chem. Mater. 13, 2684–2689.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, H. P., Li, X.-H. & Cheng, Y.-Q. (2005). Acta Cryst. E61, m158–m159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXie, G., Zeng, M.-H., Chen, S.-P. & Gao, S.-L. (2005). Acta Cryst. E61, m2273–m2275.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXie, G., Zeng, M.-H., Chen, S.-P. & Gao, S.-L. (2006). Acta Cryst. E62, m397–m399.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds