metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m100-m101

{μ-N,N′-Bis[1-(2-pyridyl)ethyl­idene]benzene-1,2-di­amine}di-μ-chlorido-bis­[di­aquanickel(II)] dichloride ethanol disolvate

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania, and cDépartement de Chimie, Faculté des Sciences, Université de Conakry, Conakry, Guinea
*Correspondence e-mail: mlgayeastou@yahoo.fr

(Received 13 November 2008; accepted 6 December 2008; online 20 December 2008)

In the title compound, [Ni2Cl2(C20H18N4)(H2O)4]Cl2·2C2H6O, the coordination environment of each Ni2+ ion is distorted octa­hedral formed by two N atoms from the Schiff base ligand, two O atoms from water mol­ecules and two chloride anions acting as μ2 bridges between the metal ions. The coordinated water mol­ecules are linked to the uncoordinated ethanol mol­ecules and chloride anions by O—H⋯O and O—H⋯Cl hydrogen bonds, although the assignment of some of these is tentative. A weak inter­molecular O—H⋯N inter­action within the ligand is also observed.

Related literature

For related structures, see: Kelly et al. (2005[Kelly, T. L., Milway, V. A., Grove, H., Niel, V., Abedin, T. S. M., Thompson, L. K., Zhao, L., Harvey, R. G., Miller, D. O., Leech, M., Goeta, A. E. & Howard, J. A. K. (2005). Polyhedron, 24, 807-821.]); Garoufis et al. (1998[Garoufis, A., Kasselouri, S., Raptopoulou, C. P. & Terzis, A. (1998). Polyhedron, 17, 1-7.]); Li et al. (2005[Li, Q. X., Luo, Q. H., Li, Y. Z., Duan, C. Y. & Tu, O. Y. (2005). Inorg. Chim. Acta, 358, 504-512.]); Deters et al. (2005[Deters, E. A., Goldcamp, M. J., Krause Bauer, J. A. & Baldwin, M. J. (2005). Inorg. Chem. 44, 5222-5228.]); Sengottuvelan et al. (2008[Sengottuvelan, N., Kang, S. K. & Kim, Y.-I. (2008). Bull. Korean Chem. Soc. 29, 1784-1786.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2Cl2(C20H18N4)(H2O)4]Cl2·2C2H6O

  • Mr = 737.80

  • Orthorhombic, P 21 21 21

  • a = 13.078 (2) Å

  • b = 13.575 (2) Å

  • c = 17.873 (4) Å

  • V = 3173.06 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.57 mm−1

  • T = 173 (2) K

  • 0.14 × 0.12 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 13155 measured reflections

  • 8765 independent reflections

  • 6892 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.096

  • S = 1.04

  • 8765 reflections

  • 385 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.63 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3623 Friedel pairs

  • Flack parameter: 0.005 (12)

Table 1
Selected bond lengths (Å)

Ni1—N1 2.071 (3)
Ni1—N2 2.073 (3)
Ni1—O1 2.072 (2)
Ni1—O2 2.085 (2)
Ni1—Cl2 2.3985 (8)
Ni1—Cl1 2.4323 (8)
Ni2—N4 2.063 (2)
Ni2—N3 2.077 (3)
Ni2—O3 2.087 (2)
Ni2—O4 2.097 (2)
Ni2—Cl2 2.3778 (8)
Ni2—Cl1 2.4331 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—HW1A⋯O5i 0.888 (19) 1.98 (3) 2.781 (3) 150 (4)
O1—HW1B⋯Cl3i 0.934 (18) 2.175 (19) 3.107 (2) 176 (4)
O2—HW2A⋯Cl3i 0.916 (19) 2.21 (2) 3.104 (3) 165 (4)
O2—HW2B⋯Cl4 0.942 (19) 2.122 (19) 3.064 (3) 179 (4)
O3—HW3A⋯O5i 0.939 (19) 1.87 (2) 2.787 (3) 163 (4)
O3—HW3B⋯Cl3ii 0.919 (18) 2.215 (19) 3.133 (2) 176 (4)
O4—HW4A⋯O6ii 0.922 (19) 1.79 (2) 2.702 (4) 168 (4)
O4—HW4B⋯Cl3ii 0.921 (19) 2.27 (2) 3.136 (3) 157 (4)
O5—H1A⋯O1iii 0.84 1.96 2.781 (3) 166
O6—H2A⋯O4iv 0.84 2.18 2.702 (4) 121
O6—H2A⋯N4iv 0.84 2.66 3.467 (4) 163
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT and DENZO. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Nonius, 1998[Nonius (1998). COLLECT and DENZO. Nonius BV, Delft, The Netherlands.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure of the title compound, (I), is shown in Fig. 1. In the complex, the ligand coordinates the two metal ions via the two imine N atoms and the two pyridyl nitrogen atoms (one of each type per metal ion). Each metal ion is coordinated by two oxygen atoms from water molecules and two chloride anions (Table 1). Thus, the metal ions are in facial N2O2Cl2 coordination environments and are connected by two chloride anions bridges to yield a binuclear complex. The Ni···Ni distance spanned by the two chloride ion bridges is 3.9615 (16) Å. The Ni—Cl distances in (I) are longer than distances observed in other NiII coordination complexes (Li et al., 2005; Deters et al., 2005; Sengottuvelan et al., 2008). Two chloride ions are present in the asymmetric unit to compensate for the doubly positive charge of the complex and hydrogen bonds (Table 2) help to establish the packing.

Related literature top

For related structures, see: Kelly et al. (2005); Garoufis et al. (1998); Li et al. (2005); Deters et al. (2005); Sengottuvelan et al. (2008).

Experimental top

To a mixture of 1 g (9.2 mmol) 1,2-diaminobenzene and 100 ml of ethanol was added dropwise a solution of 2.24 g (18.46 mmol) of 2-acetylpyridine. The resulting mixture was stirred under reflux for 60 min. A solution of 2.19 g (9.2 mmol) of NiCl2.6H2O was added. After cooling the solution was filtered and the solvent evaporated to dryness. The resulting yellow solid was recrystallized by diffusion of toluene in the ethanolic solution of the compound and green prisms of (I) were obtained (5.2 g; 75.00°) after one week. IR (cm-1,KBr): 3372, 1595, 1570. Analysis calculated for C24H38Cl4N4O6Ni2: C 39.07, H 5.19, N 7.59 °; found: C 39.01, H 5.21, N 7.60 °.

Refinement top

The water H atoms were located from difference maps and refined with distance restraints of 0.96±0.02Å. The other H atoms were placed geometrically (C—H = 0.95–0.99Å, O—H = 0.84Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C, O). The refinement scheme has led to some very short intermolecular H···H contacts and the location of the water H atoms should be regarded as less certain.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Nonius, 1998); data reduction: DENZO (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for the nno-hydrogen atoms plotted at the 50% probability level.
[Figure 2] Fig. 2. The packing for (I): the broken lines stand for hydrogen bonds.
{µ-N,N'-Bis[1-(2-pyridyl)ethylidene]benzene-1,2-diamine}di- µ-chlorido-bis[diaquanickel(II)] dichloride ethanol disolvate top
Crystal data top
[Ni2Cl2(C20H18N4)(H2O)4]Cl2·2C2H6OF(000) = 1528
Mr = 737.80Dx = 1.544 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5114 reflections
a = 13.078 (2) Åθ = 1.0–30.0°
b = 13.575 (2) ŵ = 1.57 mm1
c = 17.873 (4) ÅT = 173 K
V = 3173.06 (10) Å3Prism, green
Z = 40.14 × 0.12 × 0.10 mm
Data collection top
KappaCCD
diffractometer
6892 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 30.0°, θmin = 3.2°
π and ω scansh = 1818
13155 measured reflectionsk = 1919
8765 independent reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0393P)2 + 1.0903P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.006
8765 reflectionsΔρmax = 0.61 e Å3
385 parametersΔρmin = 0.63 e Å3
8 restraintsAbsolute structure: Flack (1983), 3623 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.005 (12)
Crystal data top
[Ni2Cl2(C20H18N4)(H2O)4]Cl2·2C2H6OV = 3173.06 (10) Å3
Mr = 737.80Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 13.078 (2) ŵ = 1.57 mm1
b = 13.575 (2) ÅT = 173 K
c = 17.873 (4) Å0.14 × 0.12 × 0.10 mm
Data collection top
KappaCCD
diffractometer
6892 reflections with I > 2σ(I)
13155 measured reflectionsRint = 0.000
8765 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096Δρmax = 0.61 e Å3
S = 1.04Δρmin = 0.63 e Å3
8765 reflectionsAbsolute structure: Flack (1983), 3623 Friedel pairs
385 parametersAbsolute structure parameter: 0.005 (12)
8 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.35695 (3)0.50399 (3)0.39085 (2)0.01943 (9)
Ni20.61577 (3)0.50829 (3)0.40432 (2)0.01891 (9)
Cl10.48398 (6)0.39219 (5)0.44251 (5)0.02207 (16)
Cl20.48535 (6)0.62991 (5)0.39662 (5)0.02335 (17)
Cl30.28973 (9)0.25896 (7)0.01232 (6)0.0461 (3)
Cl40.08115 (8)0.53903 (7)0.24677 (6)0.0400 (2)
O10.30614 (18)0.53214 (16)0.49855 (13)0.0255 (5)
HW1A0.351 (3)0.519 (3)0.5344 (18)0.050*
HW1B0.279 (3)0.5959 (17)0.497 (2)0.050*
O20.25390 (18)0.60814 (18)0.35001 (14)0.0256 (6)
HW2A0.228 (3)0.645 (3)0.3889 (18)0.050*
HW2B0.200 (2)0.587 (3)0.319 (2)0.050*
O30.64419 (18)0.53720 (16)0.51712 (13)0.0245 (5)
HW3A0.588 (2)0.535 (3)0.549 (2)0.050*
HW3B0.660 (3)0.6031 (15)0.517 (2)0.050*
O40.72880 (18)0.61205 (17)0.37763 (14)0.0253 (5)
HW4A0.7962 (17)0.594 (3)0.370 (2)0.050*
HW4B0.743 (3)0.651 (3)0.4184 (17)0.050*
O50.03498 (19)0.43711 (17)0.09927 (15)0.0345 (6)
H1A0.07550.45090.06440.050*
O60.0747 (2)0.0506 (3)0.1231 (2)0.0660 (10)
H2A0.13200.02460.11550.050*
N10.2552 (2)0.3885 (2)0.37723 (17)0.0229 (6)
N20.38534 (19)0.46316 (17)0.28105 (15)0.0190 (5)
N30.60457 (19)0.46709 (18)0.29271 (15)0.0193 (6)
N40.71873 (19)0.39336 (18)0.39947 (16)0.0197 (5)
C10.1904 (3)0.3521 (3)0.4284 (2)0.0299 (8)
H10.18730.38250.47620.036*
C20.1276 (3)0.2716 (3)0.4140 (2)0.0355 (9)
H20.08240.24760.45140.043*
C30.1321 (3)0.2272 (3)0.3446 (2)0.0348 (9)
H30.08990.17220.33340.042*
C40.1993 (3)0.2642 (2)0.2912 (2)0.0282 (8)
H40.20340.23500.24300.034*
C50.2603 (2)0.3446 (2)0.3093 (2)0.0227 (7)
C60.3333 (2)0.3895 (2)0.25517 (19)0.0246 (7)
C70.3406 (3)0.3484 (3)0.1785 (2)0.0370 (9)
H7A0.27760.36310.15100.056*
H7B0.34990.27680.18140.056*
H7C0.39900.37790.15260.056*
C80.4461 (2)0.5215 (2)0.23195 (18)0.0206 (7)
C90.3971 (3)0.5831 (2)0.1807 (2)0.0271 (8)
H90.32500.57990.17510.032*
C100.4531 (3)0.6488 (2)0.1380 (2)0.0291 (8)
H100.41920.69190.10430.035*
C110.5586 (3)0.6515 (3)0.1445 (2)0.0296 (8)
H110.59720.69620.11490.036*
C120.6079 (3)0.5888 (2)0.1942 (2)0.0274 (8)
H120.68040.58990.19810.033*
C130.5517 (2)0.5246 (2)0.23829 (18)0.0205 (7)
C140.6560 (2)0.3905 (2)0.27341 (19)0.0237 (7)
C150.6549 (3)0.3448 (3)0.1975 (2)0.0386 (10)
H15A0.64860.27310.20230.058*
H15B0.71870.36070.17130.058*
H15C0.59680.37050.16890.058*
C160.7215 (2)0.3468 (2)0.33302 (19)0.0211 (7)
C170.7835 (3)0.2657 (2)0.3212 (2)0.0266 (8)
H170.78580.23450.27360.032*
C180.8422 (3)0.2308 (2)0.3800 (2)0.0314 (8)
H180.88470.17480.37340.038*
C190.8382 (3)0.2780 (3)0.4480 (2)0.0324 (8)
H190.87800.25500.48890.039*
C200.7753 (3)0.3597 (2)0.4559 (2)0.0267 (8)
H200.77250.39240.50280.032*
C210.0361 (4)0.3042 (3)0.1739 (3)0.0508 (12)
H21A0.03400.23280.18170.076*
H21B0.10560.32410.16030.076*
H21C0.01580.33780.22010.076*
C220.0361 (3)0.3317 (3)0.1123 (2)0.0417 (10)
H22A0.10620.31070.12580.050*
H22B0.01630.29690.06580.050*
C230.0117 (4)0.0366 (4)0.0593 (3)0.0704 (15)
H23A0.05610.06620.06940.084*
H23B0.00150.03500.05180.084*
C240.0527 (4)0.0792 (4)0.0104 (3)0.0676 (15)
H24A0.03950.15030.01110.101*
H24B0.01930.04820.05340.101*
H24C0.12660.06750.01290.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02046 (19)0.01869 (19)0.0192 (2)0.00053 (16)0.00040 (15)0.00077 (17)
Ni20.02056 (19)0.01757 (18)0.0186 (2)0.00017 (16)0.00013 (15)0.00029 (17)
Cl10.0228 (4)0.0177 (3)0.0257 (4)0.0007 (3)0.0004 (3)0.0026 (3)
Cl20.0246 (4)0.0183 (3)0.0272 (4)0.0005 (3)0.0005 (4)0.0005 (3)
Cl30.0681 (7)0.0345 (5)0.0358 (6)0.0194 (5)0.0085 (5)0.0105 (4)
Cl40.0453 (6)0.0444 (5)0.0303 (5)0.0074 (4)0.0043 (4)0.0064 (4)
O10.0302 (13)0.0273 (12)0.0188 (13)0.0035 (10)0.0009 (10)0.0024 (10)
O20.0262 (14)0.0255 (12)0.0252 (15)0.0027 (10)0.0005 (11)0.0031 (10)
O30.0289 (13)0.0241 (11)0.0206 (13)0.0015 (10)0.0005 (10)0.0034 (9)
O40.0261 (12)0.0250 (12)0.0250 (14)0.0031 (10)0.0020 (11)0.0021 (10)
O50.0393 (15)0.0381 (13)0.0259 (14)0.0034 (11)0.0030 (12)0.0069 (11)
O60.0325 (16)0.109 (3)0.056 (2)0.0077 (17)0.0038 (16)0.001 (2)
N10.0230 (15)0.0211 (13)0.0246 (16)0.0015 (11)0.0007 (12)0.0003 (12)
N20.0198 (13)0.0165 (12)0.0208 (14)0.0000 (10)0.0017 (11)0.0008 (10)
N30.0207 (13)0.0199 (13)0.0172 (14)0.0013 (10)0.0008 (11)0.0003 (10)
N40.0204 (13)0.0178 (12)0.0209 (15)0.0001 (10)0.0009 (12)0.0026 (11)
C10.0251 (18)0.0332 (18)0.032 (2)0.0022 (15)0.0035 (16)0.0010 (16)
C20.026 (2)0.0381 (19)0.042 (2)0.0064 (16)0.0056 (17)0.0087 (17)
C30.031 (2)0.0239 (17)0.049 (3)0.0091 (16)0.0048 (19)0.0004 (16)
C40.0275 (18)0.0246 (17)0.032 (2)0.0016 (15)0.0048 (16)0.0004 (15)
C50.0212 (17)0.0207 (16)0.0264 (19)0.0012 (13)0.0000 (14)0.0026 (14)
C60.0275 (18)0.0236 (16)0.0226 (18)0.0038 (14)0.0018 (14)0.0021 (14)
C70.047 (2)0.037 (2)0.027 (2)0.0130 (18)0.0027 (18)0.0100 (16)
C80.0257 (16)0.0181 (15)0.0180 (16)0.0008 (12)0.0016 (13)0.0004 (12)
C90.0247 (18)0.0272 (17)0.029 (2)0.0040 (14)0.0031 (15)0.0005 (14)
C100.038 (2)0.0267 (17)0.0228 (19)0.0036 (15)0.0013 (16)0.0075 (14)
C110.038 (2)0.0268 (17)0.024 (2)0.0041 (15)0.0027 (16)0.0071 (14)
C120.0257 (18)0.0294 (17)0.0270 (19)0.0030 (14)0.0017 (15)0.0016 (14)
C130.0257 (16)0.0183 (15)0.0176 (16)0.0007 (12)0.0001 (13)0.0016 (12)
C140.0236 (17)0.0240 (16)0.0235 (18)0.0021 (14)0.0036 (14)0.0023 (13)
C150.046 (2)0.044 (2)0.025 (2)0.0153 (19)0.0069 (18)0.0112 (17)
C160.0203 (16)0.0211 (15)0.0220 (18)0.0013 (13)0.0003 (14)0.0006 (13)
C170.0283 (19)0.0249 (17)0.026 (2)0.0004 (14)0.0017 (15)0.0005 (14)
C180.0305 (19)0.0247 (16)0.039 (2)0.0076 (14)0.0005 (17)0.0000 (16)
C190.0262 (19)0.0327 (19)0.038 (2)0.0077 (15)0.0058 (17)0.0054 (16)
C200.0284 (18)0.0288 (17)0.0230 (19)0.0004 (14)0.0031 (15)0.0018 (14)
C210.053 (3)0.049 (2)0.050 (3)0.010 (2)0.002 (2)0.015 (2)
C220.044 (2)0.038 (2)0.044 (3)0.0019 (17)0.000 (2)0.0052 (18)
C230.042 (3)0.099 (4)0.070 (4)0.009 (3)0.003 (3)0.013 (3)
C240.065 (3)0.096 (4)0.042 (3)0.011 (3)0.007 (3)0.001 (3)
Geometric parameters (Å, º) top
Ni1—N12.071 (3)C5—C61.490 (5)
Ni1—N22.073 (3)C6—C71.482 (5)
Ni1—O12.072 (2)C7—H7A0.9800
Ni1—O22.085 (2)C7—H7B0.9800
Ni1—Cl22.3985 (8)C7—H7C0.9800
Ni1—Cl12.4323 (8)C8—C131.386 (4)
Ni2—N42.063 (2)C8—C91.396 (4)
Ni2—N32.077 (3)C9—C101.384 (5)
Ni2—O32.087 (2)C9—H90.9500
Ni2—O42.097 (2)C10—C111.385 (5)
Ni2—Cl22.3778 (8)C10—H100.9500
Ni2—Cl12.4331 (8)C11—C121.390 (5)
O1—HW1A0.888 (19)C11—H110.9500
O1—HW1B0.934 (18)C12—C131.386 (4)
O2—HW2A0.916 (19)C12—H120.9500
O2—HW2B0.942 (19)C14—C161.490 (5)
O3—HW3A0.939 (19)C14—C151.493 (5)
O3—HW3B0.919 (18)C15—H15A0.9800
O4—HW4A0.922 (19)C15—H15B0.9800
O4—HW4B0.921 (19)C15—H15C0.9800
O5—C221.450 (4)C16—C171.384 (5)
O5—H1A0.8400C17—C181.385 (5)
O6—C231.418 (6)C17—H170.9500
O6—H2A0.8400C18—C191.374 (5)
N1—C11.340 (4)C18—H180.9500
N1—C51.354 (5)C19—C201.389 (5)
N2—C61.295 (4)C19—H190.9500
N2—C81.424 (4)C20—H200.9500
N3—C141.285 (4)C21—C221.498 (6)
N3—C131.426 (4)C21—H21A0.9800
N4—C201.332 (4)C21—H21B0.9800
N4—C161.346 (4)C21—H21C0.9800
C1—C21.391 (5)C22—H22A0.9900
C1—H10.9500C22—H22B0.9900
C2—C31.381 (6)C23—C241.475 (7)
C2—H20.9500C23—H23A0.9900
C3—C41.390 (5)C23—H23B0.9900
C3—H30.9500C24—H24A0.9800
C4—C51.390 (5)C24—H24B0.9800
C4—H40.9500C24—H24C0.9800
N1—Ni1—O192.45 (11)N2—C6—C5114.9 (3)
N1—Ni1—N278.55 (11)C7—C6—C5119.2 (3)
O1—Ni1—N2170.54 (10)C6—C7—H7A109.5
N1—Ni1—O293.27 (10)C6—C7—H7B109.5
O1—Ni1—O289.59 (9)H7A—C7—H7B109.5
N2—Ni1—O288.03 (10)C6—C7—H7C109.5
N1—Ni1—Cl2174.04 (8)H7A—C7—H7C109.5
O1—Ni1—Cl293.04 (7)H7B—C7—H7C109.5
N2—Ni1—Cl296.08 (7)C13—C8—C9119.5 (3)
O2—Ni1—Cl289.10 (7)C13—C8—N2121.5 (3)
N1—Ni1—Cl190.64 (8)C9—C8—N2118.8 (3)
O1—Ni1—Cl188.94 (7)C10—C9—C8120.4 (3)
N2—Ni1—Cl194.02 (7)C10—C9—H9119.8
O2—Ni1—Cl1175.89 (7)C8—C9—H9119.8
Cl2—Ni1—Cl187.14 (3)C9—C10—C11119.8 (3)
N4—Ni2—N378.58 (11)C9—C10—H10120.1
N4—Ni2—O393.82 (10)C11—C10—H10120.1
N3—Ni2—O3172.26 (10)C10—C11—C12120.0 (3)
N4—Ni2—O492.20 (9)C10—C11—H11120.0
N3—Ni2—O490.69 (10)C12—C11—H11120.0
O3—Ni2—O488.16 (9)C13—C12—C11120.2 (3)
N4—Ni2—Cl2172.31 (8)C13—C12—H12119.9
N3—Ni2—Cl294.64 (7)C11—C12—H12119.9
O3—Ni2—Cl293.04 (7)C12—C13—C8120.1 (3)
O4—Ni2—Cl291.50 (7)C12—C13—N3118.3 (3)
N4—Ni2—Cl189.10 (7)C8—C13—N3121.5 (3)
N3—Ni2—Cl192.58 (7)N3—C14—C16115.5 (3)
O3—Ni2—Cl188.68 (7)N3—C14—C15125.1 (3)
O4—Ni2—Cl1176.66 (8)C16—C14—C15119.3 (3)
Cl2—Ni2—Cl187.59 (3)C14—C15—H15A109.5
Ni1—Cl1—Ni288.46 (3)C14—C15—H15B109.5
Ni2—Cl2—Ni190.56 (3)H15A—C15—H15B109.5
Ni1—O1—HW1A115 (3)C14—C15—H15C109.5
Ni1—O1—HW1B106 (3)H15A—C15—H15C109.5
HW1A—O1—HW1B116 (4)H15B—C15—H15C109.5
Ni1—O2—HW2A110 (3)N4—C16—C17121.6 (3)
Ni1—O2—HW2B119 (2)N4—C16—C14115.4 (3)
HW2A—O2—HW2B110 (4)C17—C16—C14123.0 (3)
Ni2—O3—HW3A117 (3)C16—C17—C18118.7 (3)
Ni2—O3—HW3B102 (3)C16—C17—H17120.7
HW3A—O3—HW3B103 (3)C18—C17—H17120.7
Ni2—O4—HW4A122 (3)C19—C18—C17119.5 (3)
Ni2—O4—HW4B110 (3)C19—C18—H18120.3
HW4A—O4—HW4B94 (3)C17—C18—H18120.3
C22—O5—H1A109.5C18—C19—C20119.0 (3)
C23—O6—H2A109.5C18—C19—H19120.5
C1—N1—C5118.8 (3)C20—C19—H19120.5
C1—N1—Ni1127.2 (2)N4—C20—C19121.7 (3)
C5—N1—Ni1114.0 (2)N4—C20—H20119.1
C6—N2—C8120.2 (3)C19—C20—H20119.1
C6—N2—Ni1116.8 (2)C22—C21—H21A109.5
C8—N2—Ni1122.33 (19)C22—C21—H21B109.5
C14—N3—C13120.9 (3)H21A—C21—H21B109.5
C14—N3—Ni2116.0 (2)C22—C21—H21C109.5
C13—N3—Ni2122.83 (19)H21A—C21—H21C109.5
C20—N4—C16119.5 (3)H21B—C21—H21C109.5
C20—N4—Ni2126.2 (2)O5—C22—C21111.0 (3)
C16—N4—Ni2114.2 (2)O5—C22—H22A109.4
N1—C1—C2122.5 (3)C21—C22—H22A109.4
N1—C1—H1118.8O5—C22—H22B109.4
C2—C1—H1118.8C21—C22—H22B109.4
C3—C2—C1118.9 (3)H22A—C22—H22B108.0
C3—C2—H2120.6O6—C23—C24114.5 (4)
C1—C2—H2120.6O6—C23—H23A108.6
C2—C3—C4119.1 (3)C24—C23—H23A108.6
C2—C3—H3120.5O6—C23—H23B108.6
C4—C3—H3120.5C24—C23—H23B108.6
C5—C4—C3119.1 (3)H23A—C23—H23B107.6
C5—C4—H4120.5C23—C24—H24A109.5
C3—C4—H4120.5C23—C24—H24B109.5
N1—C5—C4121.7 (3)H24A—C24—H24B109.5
N1—C5—C6115.8 (3)C23—C24—H24C109.5
C4—C5—C6122.5 (3)H24A—C24—H24C109.5
N2—C6—C7126.0 (3)H24B—C24—H24C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HW1A···O5i0.89 (2)1.98 (3)2.781 (3)150 (4)
O1—HW1B···Cl3i0.93 (2)2.18 (2)3.107 (2)176 (4)
O2—HW2A···Cl3i0.92 (2)2.21 (2)3.104 (3)165 (4)
O2—HW2B···Cl40.94 (2)2.12 (2)3.064 (3)179 (4)
O3—HW3A···O5i0.94 (2)1.87 (2)2.787 (3)163 (4)
O3—HW3B···Cl3ii0.92 (2)2.22 (2)3.133 (2)176 (4)
O4—HW4A···O6ii0.92 (2)1.79 (2)2.702 (4)168 (4)
O4—HW4B···Cl3ii0.92 (2)2.27 (2)3.136 (3)157 (4)
O5—H1A···O1iii0.841.962.781 (3)166
O6—H2A···O4iv0.842.182.702 (4)121
O6—H2A···N4iv0.842.663.467 (4)163
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y+1, z1/2; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni2Cl2(C20H18N4)(H2O)4]Cl2·2C2H6O
Mr737.80
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)13.078 (2), 13.575 (2), 17.873 (4)
V3)3173.06 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.14 × 0.12 × 0.10
Data collection
DiffractometerKappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13155, 8765, 6892
Rint0.000
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.096, 1.04
No. of reflections8765
No. of parameters385
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.63
Absolute structureFlack (1983), 3623 Friedel pairs
Absolute structure parameter0.005 (12)

Computer programs: COLLECT (Nonius, 1998), DENZO (Nonius, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Selected bond lengths (Å) top
Ni1—N12.071 (3)Ni2—N42.063 (2)
Ni1—N22.073 (3)Ni2—N32.077 (3)
Ni1—O12.072 (2)Ni2—O32.087 (2)
Ni1—O22.085 (2)Ni2—O42.097 (2)
Ni1—Cl22.3985 (8)Ni2—Cl22.3778 (8)
Ni1—Cl12.4323 (8)Ni2—Cl12.4331 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HW1A···O5i0.888 (19)1.98 (3)2.781 (3)150 (4)
O1—HW1B···Cl3i0.934 (18)2.175 (19)3.107 (2)176 (4)
O2—HW2A···Cl3i0.916 (19)2.21 (2)3.104 (3)165 (4)
O2—HW2B···Cl40.942 (19)2.122 (19)3.064 (3)179 (4)
O3—HW3A···O5i0.939 (19)1.87 (2)2.787 (3)163 (4)
O3—HW3B···Cl3ii0.919 (18)2.215 (19)3.133 (2)176 (4)
O4—HW4A···O6ii0.922 (19)1.79 (2)2.702 (4)168 (4)
O4—HW4B···Cl3ii0.921 (19)2.27 (2)3.136 (3)157 (4)
O5—H1A···O1iii0.841.962.781 (3)166
O6—H2A···O4iv0.842.182.702 (4)121
O6—H2A···N4iv0.842.663.467 (4)163
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y+1, z1/2; (iv) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Agence Universitaire de la Francophonie for financial support (AUF-PSCI No. 6314PS804).

References

First citationDeters, E. A., Goldcamp, M. J., Krause Bauer, J. A. & Baldwin, M. J. (2005). Inorg. Chem. 44, 5222–5228.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGaroufis, A., Kasselouri, S., Raptopoulou, C. P. & Terzis, A. (1998). Polyhedron, 17, 1–7.  Google Scholar
First citationKelly, T. L., Milway, V. A., Grove, H., Niel, V., Abedin, T. S. M., Thompson, L. K., Zhao, L., Harvey, R. G., Miller, D. O., Leech, M., Goeta, A. E. & Howard, J. A. K. (2005). Polyhedron, 24, 807–821.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Q. X., Luo, Q. H., Li, Y. Z., Duan, C. Y. & Tu, O. Y. (2005). Inorg. Chim. Acta, 358, 504–512.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT and DENZO. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSengottuvelan, N., Kang, S. K. & Kim, Y.-I. (2008). Bull. Korean Chem. Soc. 29, 1784–1786.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m100-m101
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds