metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(di­methyl­amino)pyridinium] 3.75-bromido-0.25-chloridodi­phenyl­plumbate(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 24 November 2008; accepted 1 December 2008; online 6 December 2008)

The PbIV atom of the plumbate dianion in the title compound, (C7H11N)2[Pb(Br3.75Cl0.25)(C6H5)2], lies on a centre of inversion in a tetra­gonally compressed octa­hedral geometry. One of the attached Br atoms is disordered with respect to a Cl atom in a 7:1 ratio. The disordered halogen atom is an N—H⋯(Br/Cl) hydrogen-bond acceptor for the cation.

Related literature

For the structure of the isostructural compound bis­(4-di­methyl­amino­pyridinium) tetra­bromidodiphenyl­plumbate(IV), see: Lo & Ng (2008[Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m1222.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H11N)2[Pb(Br3.75Cl0.25)(C6H5)2]

  • Mr = 916.27

  • Monoclinic, P 21 /n

  • a = 9.5010 (2) Å

  • b = 13.8916 (3) Å

  • c = 10.9851 (2) Å

  • β = 92.996 (1)°

  • V = 1447.88 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 11.05 mm−1

  • T = 100 (2) K

  • 0.12 × 0.11 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.351, Tmax = 0.405 (expected range = 0.287–0.331)

  • 10028 measured reflections

  • 3327 independent reflections

  • 2909 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.048

  • S = 1.02

  • 3327 reflections

  • 166 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected bond lengths (Å)

X = Br, Cl.

Pb1—C1 2.184 (3)
Pb1—X1 2.8523 (3)
Pb1—Br2 2.8885 (3)

Table 2
Hydrogen-bond geometry (Å, °)

X = Br, Cl.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯X1 0.87 (1) 2.49 (2) 3.260 (3) 148 (4)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Related literature top

For the structure of the isostructural compound bis(4-dimethylaminopyridinium) tetrabromidodiphenylplumbate, see: Lo & Ng (2008).

Experimental top

Diphenyllead dichloride (1.3 g, 3 mmol) and 4-dimethylaminopyridine hydrobromide perbromide (1.1 g, 3 mmol) were heated in chloroform (100 ml) for an hour. The filtered solution when allowed to evaporate yielded large colorless crystals of (I).

Refinement top

The carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2 to 1.5Ueq(C). The ammonium H atom was located in a difference Fourier map, and was refined with a distance constraint of N—H = 0.88 (1) Å; its Uiso value was refined.

The two independent halogen atoms were initially refined as full-occupancy Br atoms; however, the difference Fourier map had a deep hole near one of the two. When this atom was allowed to refine as a mixture of bromine and chlorine, the refinement converged, and it gave the Br:Cl ratio as 0.88:0.12. The ratio was subsequently fixed as 0.875:0.125. Attempts to model the Br and Cl atoms on separate sites were not successful.

The published (C7H11N)2[PbBr4(C6H5)2] structure (Lo & Ng, 2008) does not contain any chlorine as the compound was synthesized by the cleavage of tetraphenyllead by 4-aminomethylpyridine hydrobromide perbromide.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) at the 70% probability level. H atoms are drawn as spheres of arbitrary radius. Unlabelled atoms in the anion are generated by the symmetry operation (1 - x, 1 - y, 1 - z).
Bis[4-(dimethylamino)pyridinium] 3.75-bromido-0.25-chloridodiphenylplumbate(IV) top
Crystal data top
(C7H11N)2[PbBr3.75(C6H5)2Cl0.25]F(000) = 867
Mr = 916.27Dx = 2.102 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4255 reflections
a = 9.5010 (2) Åθ = 2.4–28.4°
b = 13.8916 (3) ŵ = 11.05 mm1
c = 10.9851 (2) ÅT = 100 K
β = 92.996 (1)°Faceted block, colourless
V = 1447.88 (5) Å30.12 × 0.11 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
3327 independent reflections
Radiation source: fine-focus sealed tube2909 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.351, Tmax = 0.405k = 1518
10028 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0227P)2 + 0.2619P]
where P = (Fo2 + 2Fc2)/3
3327 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.77 e Å3
1 restraintΔρmin = 0.52 e Å3
Crystal data top
(C7H11N)2[PbBr3.75(C6H5)2Cl0.25]V = 1447.88 (5) Å3
Mr = 916.27Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.5010 (2) ŵ = 11.05 mm1
b = 13.8916 (3) ÅT = 100 K
c = 10.9851 (2) Å0.12 × 0.11 × 0.10 mm
β = 92.996 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3327 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2909 reflections with I > 2σ(I)
Tmin = 0.351, Tmax = 0.405Rint = 0.028
10028 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0221 restraint
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.77 e Å3
3327 reflectionsΔρmin = 0.52 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pb10.50000.50000.50000.01182 (5)
Br10.55819 (4)0.61268 (2)0.29147 (3)0.01476 (8)0.875
Br20.76221 (3)0.40251 (2)0.46037 (3)0.01660 (8)
Cl10.55819 (4)0.61268 (2)0.29147 (3)0.01476 (8)0.125
N10.8894 (3)0.5871 (2)0.2345 (3)0.0224 (7)
H10.815 (3)0.582 (3)0.277 (3)0.042 (13)*
N21.1998 (3)0.59111 (19)0.0113 (2)0.0173 (6)
C10.6143 (3)0.6021 (2)0.6197 (3)0.0138 (6)
C20.7445 (3)0.6367 (2)0.5890 (3)0.0152 (7)
H20.78560.61560.51670.018*
C30.8144 (4)0.7030 (2)0.6660 (3)0.0198 (7)
H30.90400.72710.64650.024*
C40.7533 (4)0.7336 (2)0.7709 (3)0.0191 (7)
H40.80090.77900.82290.023*
C50.6228 (4)0.6982 (2)0.8003 (3)0.0204 (7)
H50.58140.71940.87240.024*
C60.5527 (4)0.6321 (2)0.7248 (3)0.0163 (7)
H60.46350.60760.74480.020*
C71.0060 (4)0.5338 (3)0.2555 (3)0.0208 (7)
H71.01410.49410.32600.025*
C81.1124 (4)0.5356 (2)0.1781 (3)0.0189 (7)
H81.19450.49800.19530.023*
C91.1019 (3)0.5933 (2)0.0715 (3)0.0146 (7)
C100.9798 (4)0.6523 (2)0.0576 (3)0.0189 (7)
H100.97010.69590.00890.023*
C110.8778 (4)0.6469 (2)0.1382 (3)0.0220 (8)
H110.79620.68600.12670.026*
C121.3282 (4)0.5343 (3)0.0091 (3)0.0225 (7)
H12A1.30340.46830.03130.034*
H12B1.38720.56320.07520.034*
H12C1.38030.53320.06560.034*
C131.1938 (4)0.6535 (3)0.1175 (3)0.0267 (8)
H13A1.09520.66580.14340.040*
H13B1.24140.62220.18400.040*
H13C1.24090.71460.09700.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01154 (9)0.01443 (9)0.00939 (8)0.00187 (6)0.00034 (6)0.00126 (6)
Br10.01359 (18)0.01750 (17)0.01320 (16)0.00047 (13)0.00073 (13)0.00243 (12)
Br20.01506 (17)0.02009 (17)0.01462 (16)0.00203 (12)0.00038 (12)0.00043 (12)
Cl10.01359 (18)0.01750 (17)0.01320 (16)0.00047 (13)0.00073 (13)0.00243 (12)
N10.0161 (17)0.0309 (17)0.0206 (16)0.0016 (13)0.0056 (12)0.0050 (13)
N20.0201 (16)0.0158 (14)0.0162 (14)0.0043 (11)0.0029 (11)0.0024 (11)
C10.0133 (17)0.0130 (16)0.0146 (16)0.0008 (12)0.0031 (12)0.0003 (12)
C20.0157 (17)0.0171 (16)0.0127 (16)0.0016 (13)0.0020 (12)0.0004 (12)
C30.0186 (19)0.0201 (18)0.0204 (18)0.0036 (14)0.0008 (14)0.0032 (13)
C40.024 (2)0.0171 (18)0.0156 (17)0.0024 (14)0.0081 (14)0.0015 (13)
C50.029 (2)0.0191 (18)0.0133 (16)0.0003 (14)0.0015 (14)0.0027 (13)
C60.0147 (18)0.0197 (17)0.0143 (16)0.0007 (13)0.0017 (13)0.0031 (13)
C70.022 (2)0.0252 (18)0.0149 (17)0.0029 (15)0.0004 (14)0.0010 (14)
C80.0188 (18)0.0211 (17)0.0170 (17)0.0021 (14)0.0014 (13)0.0004 (13)
C90.0158 (17)0.0164 (16)0.0113 (15)0.0013 (12)0.0011 (12)0.0051 (12)
C100.0213 (19)0.0171 (17)0.0183 (18)0.0024 (14)0.0009 (14)0.0008 (13)
C110.0188 (19)0.0229 (19)0.0242 (19)0.0047 (14)0.0015 (14)0.0052 (14)
C120.0190 (19)0.0306 (19)0.0180 (18)0.0059 (15)0.0027 (14)0.0008 (15)
C130.032 (2)0.028 (2)0.0203 (19)0.0065 (16)0.0057 (16)0.0057 (15)
Geometric parameters (Å, º) top
Pb1—C1i2.184 (3)C4—C51.388 (5)
Pb1—C12.184 (3)C4—H40.9500
Pb1—Br12.8523 (3)C5—C61.385 (4)
Pb1—Cl1i2.8523 (3)C5—H50.9500
Pb1—Br1i2.8523 (3)C6—H60.9500
Pb1—Br22.8885 (3)C7—C81.355 (4)
Pb1—Br2i2.8885 (3)C7—H70.9500
N1—C71.342 (5)C8—C91.419 (4)
N1—C111.345 (5)C8—H80.9500
N1—H10.87 (1)C9—C101.421 (4)
N2—C91.335 (4)C10—C111.348 (5)
N2—C131.452 (4)C10—H100.9500
N2—C121.461 (4)C11—H110.9500
C1—C61.385 (4)C12—H12A0.9800
C1—C21.385 (4)C12—H12B0.9800
C2—C31.395 (4)C12—H12C0.9800
C2—H20.9500C13—H13A0.9800
C3—C41.383 (4)C13—H13B0.9800
C3—H30.9500C13—H13C0.9800
C1i—Pb1—C1180.00 (12)C3—C4—C5120.2 (3)
C1i—Pb1—Br189.09 (8)C3—C4—H4119.9
C1—Pb1—Br190.91 (8)C5—C4—H4119.9
C1i—Pb1—Cl1i90.91 (8)C6—C5—C4120.2 (3)
C1—Pb1—Cl1i89.09 (8)C6—C5—H5119.9
Br1—Pb1—Cl1i180.0C4—C5—H5119.9
C1i—Pb1—Br1i90.91 (8)C5—C6—C1119.2 (3)
C1—Pb1—Br1i89.09 (8)C5—C6—H6120.4
Br1—Pb1—Br1i180.0C1—C6—H6120.4
Cl1i—Pb1—Br1i0.000 (17)N1—C7—C8121.2 (3)
C1i—Pb1—Br290.60 (8)N1—C7—H7119.4
C1—Pb1—Br289.40 (8)C8—C7—H7119.4
Br1—Pb1—Br286.065 (9)C7—C8—C9120.4 (3)
Cl1i—Pb1—Br293.935 (9)C7—C8—H8119.8
Br1i—Pb1—Br293.935 (9)C9—C8—H8119.8
C1i—Pb1—Br2i89.40 (8)N2—C9—C8121.9 (3)
C1—Pb1—Br2i90.60 (8)N2—C9—C10122.3 (3)
Br1—Pb1—Br2i93.935 (9)C8—C9—C10115.9 (3)
Cl1i—Pb1—Br2i86.065 (9)C11—C10—C9120.5 (3)
Br1i—Pb1—Br2i86.065 (9)C11—C10—H10119.7
Br2—Pb1—Br2i180.0C9—C10—H10119.7
C7—N1—C11120.6 (3)N1—C11—C10121.2 (3)
C7—N1—H1124 (3)N1—C11—H11119.4
C11—N1—H1116 (3)C10—C11—H11119.4
C9—N2—C13122.3 (3)N2—C12—H12A109.5
C9—N2—C12120.9 (3)N2—C12—H12B109.5
C13—N2—C12116.3 (3)H12A—C12—H12B109.5
C6—C1—C2121.3 (3)N2—C12—H12C109.5
C6—C1—Pb1118.6 (2)H12A—C12—H12C109.5
C2—C1—Pb1120.1 (2)H12B—C12—H12C109.5
C1—C2—C3119.0 (3)N2—C13—H13A109.5
C1—C2—H2120.5N2—C13—H13B109.5
C3—C2—H2120.5H13A—C13—H13B109.5
C4—C3—C2120.1 (3)N2—C13—H13C109.5
C4—C3—H3120.0H13A—C13—H13C109.5
C2—C3—H3120.0H13B—C13—H13C109.5
Br1—Pb1—C1—C6133.5 (2)C4—C5—C6—C10.2 (5)
Cl1i—Pb1—C1—C646.5 (2)C2—C1—C6—C50.2 (5)
Br1i—Pb1—C1—C646.5 (2)Pb1—C1—C6—C5178.8 (2)
Br2—Pb1—C1—C6140.4 (2)C11—N1—C7—C82.8 (5)
Br2i—Pb1—C1—C639.6 (2)N1—C7—C8—C90.8 (5)
Br1—Pb1—C1—C245.5 (2)C13—N2—C9—C8176.7 (3)
Cl1i—Pb1—C1—C2134.5 (2)C12—N2—C9—C84.9 (5)
Br1i—Pb1—C1—C2134.5 (2)C13—N2—C9—C104.3 (5)
Br2—Pb1—C1—C240.6 (2)C12—N2—C9—C10176.2 (3)
Br2i—Pb1—C1—C2139.4 (2)C7—C8—C9—N2174.7 (3)
C6—C1—C2—C30.0 (5)C7—C8—C9—C104.3 (5)
Pb1—C1—C2—C3179.0 (2)N2—C9—C10—C11174.6 (3)
C1—C2—C3—C40.3 (5)C8—C9—C10—C114.4 (5)
C2—C3—C4—C50.3 (5)C7—N1—C11—C102.6 (5)
C3—C4—C5—C60.1 (5)C9—C10—C11—N11.1 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.87 (1)2.49 (2)3.260 (3)148 (4)

Experimental details

Crystal data
Chemical formula(C7H11N)2[PbBr3.75(C6H5)2Cl0.25]
Mr916.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.5010 (2), 13.8916 (3), 10.9851 (2)
β (°) 92.996 (1)
V3)1447.88 (5)
Z2
Radiation typeMo Kα
µ (mm1)11.05
Crystal size (mm)0.12 × 0.11 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.351, 0.405
No. of measured, independent and
observed [I > 2σ(I)] reflections
10028, 3327, 2909
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.048, 1.02
No. of reflections3327
No. of parameters166
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.77, 0.52

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Selected bond lengths (Å) top
Pb1—C12.184 (3)Pb1—Br22.8885 (3)
Pb1—Br12.8523 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.87 (1)2.49 (2)3.260 (3)148 (4)
 

Acknowledgements

We thank the University of Malaya for funding this study (grant No. FS339/2008A) for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m1222.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds