organic compounds
2,4-Difluorophenylboronic acid
aUniversidad Politécnica de Tlaxcala, Carretera Federal Tlaxcala-Puebla Km 9.5, Tepeyanco, Tlaxcala, Mexico, and bCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001 Col., Chamilpa, CP 62209, Cuernavaca Mor., Mexico
*Correspondence e-mail: hhopfl@uaem.mx
The molecular structure of the title compound, C6H5BF2O2, is essentially planar (mean deviation = 0.019 Å), indicating electronic delocalization between the dihydroxyboryl group and the aromatic ring. In the inversion dimers linked by two O—H⋯O hydrogen bonds arise. An intramolecular O—H⋯F hydrogen bond reinforces the conformation and the same H atom is also involved in an intermolecular O—H⋯F link, leading to molecular sheets in the crystal.
Related literature
For general backround to ); Höpfl (2002); Fujita et al. (2008); Soloway et al. (1998). For hydrogen-bond motifs, see: Bernstein et al. (1995); Desiraju (2002). For related structures, see: Wu et al. (2006); Bradley et al. (1996); Horton et al. (2004). For crystal engineering, see: Fournier et al. (2003); Rodríguez-Cuamatzi et al. (2004, 2005).
see: Hall (2005Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT-Plus-NT (Bruker, 2001); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT; molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: PLATON (Spek, 2003) and publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536808040646/hb2865sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808040646/hb2865Isup2.hkl
2,4-Difluorophenylboronic acid was purchased from Aldrich and crystallized from water to yield colourless blocks of (I).
The aromatic H atoms were positioned geometrically (C—H = 0.93Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O—H hydrogen atoms were localized in a difference map and their coordinates were refined with O—H = 0.84+/0.01Å and Uiso(H) = 1.5 Ueq(O).
Data collection: SMART (Bruker, 2000); cell
SAINT-Plus-NT (Bruker, 2001); data reduction: SAINT-Plus-NT (Bruker, 2001); program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT (Sheldrick, 2008); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: PLATON (Spek, 2003) and publCIF (Westrip, 2009).C6H5BF2O2 | F(000) = 320 |
Mr = 157.91 | Dx = 1.552 Mg m−3 |
Monoclinic, P21/n | Melting point = 521–522 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 3.7617 (11) Å | Cell parameters from 1052 reflections |
b = 12.347 (4) Å | θ = 2.3–26.2° |
c = 14.620 (4) Å | µ = 0.15 mm−1 |
β = 95.450 (5)° | T = 293 K |
V = 676.0 (3) Å3 | Block, colorless |
Z = 4 | 0.37 × 0.35 × 0.22 mm |
Bruker SMART APEX CCD area-detector diffractometer | 1190 independent reflections |
Radiation source: fine-focus sealed tube | 1012 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 8.3 pixels mm-1 | θmax = 25.0°, θmin = 2.2° |
ϕ and ω scans | h = −3→4 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −14→12 |
Tmin = 0.947, Tmax = 0.968 | l = −17→17 |
3196 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.127 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.15 | w = 1/[σ2(Fo2) + (0.0442P)2 + 0.2673P] where P = (Fo2 + 2Fc2)/3 |
1190 reflections | (Δ/σ)max < 0.001 |
106 parameters | Δρmax = 0.14 e Å−3 |
2 restraints | Δρmin = −0.18 e Å−3 |
C6H5BF2O2 | V = 676.0 (3) Å3 |
Mr = 157.91 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 3.7617 (11) Å | µ = 0.15 mm−1 |
b = 12.347 (4) Å | T = 293 K |
c = 14.620 (4) Å | 0.37 × 0.35 × 0.22 mm |
β = 95.450 (5)° |
Bruker SMART APEX CCD area-detector diffractometer | 1190 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1012 reflections with I > 2σ(I) |
Tmin = 0.947, Tmax = 0.968 | Rint = 0.028 |
3196 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | 2 restraints |
wR(F2) = 0.127 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.15 | Δρmax = 0.14 e Å−3 |
1190 reflections | Δρmin = −0.18 e Å−3 |
106 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
B1 | 0.7704 (8) | 0.4548 (2) | 0.62567 (18) | 0.0452 (7) | |
O1 | 0.6825 (6) | 0.38623 (15) | 0.55419 (13) | 0.0695 (6) | |
H1 | 0.748 (9) | 0.3215 (9) | 0.562 (2) | 0.104* | |
O2 | 0.6880 (6) | 0.55977 (14) | 0.61557 (12) | 0.0630 (6) | |
H2 | 0.593 (8) | 0.577 (3) | 0.5632 (10) | 0.094* | |
F1 | 1.0385 (5) | 0.23728 (11) | 0.67473 (11) | 0.0768 (6) | |
F2 | 1.4329 (5) | 0.33016 (14) | 0.97634 (10) | 0.0822 (6) | |
C1 | 0.9591 (6) | 0.41789 (18) | 0.72069 (15) | 0.0424 (6) | |
C2 | 1.0796 (7) | 0.31430 (18) | 0.74175 (16) | 0.0470 (6) | |
C3 | 1.2380 (7) | 0.2819 (2) | 0.82553 (17) | 0.0539 (7) | |
H3 | 1.3138 | 0.2109 | 0.8363 | 0.065* | |
C4 | 1.2785 (7) | 0.3593 (2) | 0.89223 (17) | 0.0547 (7) | |
C5 | 1.1696 (8) | 0.4640 (2) | 0.87828 (17) | 0.0586 (7) | |
H5 | 1.2013 | 0.5150 | 0.9251 | 0.070* | |
C6 | 1.0119 (7) | 0.49169 (19) | 0.79282 (16) | 0.0498 (6) | |
H6 | 0.9371 | 0.5628 | 0.7827 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
B1 | 0.0451 (16) | 0.0425 (15) | 0.0471 (16) | −0.0009 (12) | −0.0005 (12) | 0.0033 (12) |
O1 | 0.1000 (17) | 0.0484 (11) | 0.0540 (11) | 0.0158 (10) | −0.0241 (10) | −0.0009 (9) |
O2 | 0.0850 (15) | 0.0441 (10) | 0.0552 (11) | 0.0087 (9) | −0.0172 (10) | 0.0048 (8) |
F1 | 0.1192 (15) | 0.0456 (9) | 0.0602 (10) | 0.0151 (9) | −0.0187 (9) | −0.0046 (7) |
F2 | 0.1070 (14) | 0.0804 (12) | 0.0527 (10) | −0.0120 (10) | −0.0262 (9) | 0.0181 (8) |
C1 | 0.0383 (13) | 0.0412 (13) | 0.0473 (13) | −0.0039 (10) | 0.0019 (10) | 0.0048 (10) |
C2 | 0.0523 (16) | 0.0410 (13) | 0.0467 (13) | −0.0017 (11) | 0.0001 (11) | 0.0008 (10) |
C3 | 0.0584 (17) | 0.0449 (14) | 0.0564 (15) | 0.0002 (12) | −0.0053 (13) | 0.0124 (12) |
C4 | 0.0579 (17) | 0.0613 (17) | 0.0426 (13) | −0.0099 (13) | −0.0075 (12) | 0.0135 (12) |
C5 | 0.0696 (19) | 0.0552 (16) | 0.0489 (14) | −0.0109 (13) | −0.0058 (13) | −0.0020 (12) |
C6 | 0.0559 (16) | 0.0399 (13) | 0.0522 (14) | −0.0011 (11) | −0.0011 (12) | 0.0029 (11) |
B1—O2 | 1.338 (3) | C1—C6 | 1.394 (3) |
B1—O1 | 1.361 (3) | C2—C3 | 1.370 (3) |
B1—C1 | 1.566 (3) | C3—C4 | 1.363 (4) |
O1—H1 | 0.841 (15) | C3—H3 | 0.93 |
O2—H2 | 0.841 (15) | C4—C5 | 1.366 (4) |
F1—C2 | 1.364 (3) | C5—C6 | 1.374 (3) |
F2—C4 | 1.358 (3) | C5—H5 | 0.93 |
C1—C2 | 1.382 (3) | C6—H6 | 0.93 |
O2—B1—O1 | 118.7 (2) | C4—C3—H3 | 121.8 |
O2—B1—C1 | 117.4 (2) | C2—C3—H3 | 121.8 |
O1—B1—C1 | 123.8 (2) | F2—C4—C3 | 118.1 (2) |
B1—O1—H1 | 116 (2) | F2—C4—C5 | 118.8 (2) |
B1—O2—H2 | 115 (2) | C3—C4—C5 | 123.0 (2) |
C2—C1—C6 | 114.6 (2) | C4—C5—C6 | 117.9 (2) |
C2—C1—B1 | 125.3 (2) | C4—C5—H5 | 121.0 |
C6—C1—B1 | 120.1 (2) | C6—C5—H5 | 121.0 |
F1—C2—C3 | 116.7 (2) | C5—C6—C1 | 122.9 (2) |
F1—C2—C1 | 118.2 (2) | C5—C6—H6 | 118.5 |
C3—C2—C1 | 125.1 (2) | C1—C6—H6 | 118.5 |
C4—C3—C2 | 116.4 (2) | ||
O2—B1—C1—C2 | −176.5 (2) | C1—C2—C3—C4 | −0.3 (4) |
O1—B1—C1—C2 | 4.5 (4) | C2—C3—C4—F2 | 179.7 (2) |
O2—B1—C1—C6 | 4.6 (4) | C2—C3—C4—C5 | 0.0 (4) |
O1—B1—C1—C6 | −174.5 (2) | F2—C4—C5—C6 | −179.6 (2) |
C6—C1—C2—F1 | −179.9 (2) | C3—C4—C5—C6 | 0.1 (4) |
B1—C1—C2—F1 | 1.1 (4) | C4—C5—C6—C1 | 0.0 (4) |
C6—C1—C2—C3 | 0.4 (4) | C2—C1—C6—C5 | −0.3 (4) |
B1—C1—C2—C3 | −178.6 (2) | B1—C1—C6—C5 | 178.8 (2) |
F1—C2—C3—C4 | 180.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···F1 | 0.84 (2) | 2.16 (3) | 2.799 (3) | 133 (2) |
O1—H1···F2i | 0.84 (2) | 2.39 (2) | 3.086 (3) | 140 (3) |
O2—H2···O1ii | 0.84 (2) | 1.97 (2) | 2.809 (3) | 174 (3) |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C6H5BF2O2 |
Mr | 157.91 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 3.7617 (11), 12.347 (4), 14.620 (4) |
β (°) | 95.450 (5) |
V (Å3) | 676.0 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.15 |
Crystal size (mm) | 0.37 × 0.35 × 0.22 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.947, 0.968 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3196, 1190, 1012 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.127, 1.15 |
No. of reflections | 1190 |
No. of parameters | 106 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.14, −0.18 |
Computer programs: SMART (Bruker, 2000), SAINT-Plus-NT (Bruker, 2001), SHELXTL-NT (Sheldrick, 2008), CAMERON (Watkin et al., 1996), PLATON (Spek, 2003) and publCIF (Westrip, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···F1 | 0.841 (15) | 2.16 (3) | 2.799 (3) | 133 (2) |
O1—H1···F2i | 0.841 (15) | 2.39 (2) | 3.086 (3) | 140 (3) |
O2—H2···O1ii | 0.841 (19) | 1.97 (2) | 2.809 (3) | 174 (3) |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
This work was supported by Consejo Nacional de Ciencia y Tecnología (CIAM-59213 for HH).
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bradley, D. C., Harding, I. S., Keefe, A. D., Motevalli, M. & Zheng, D. H. (1996). J. Chem. Soc. Dalton Trans. pp. 3931–3936. CSD CrossRef Web of Science Google Scholar
Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001). SAINT-Plus NT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573. Web of Science CrossRef PubMed CAS Google Scholar
Fournier, J.-H., Maris, T., Wuest, J. D., Guo, W. & Galoppini, E. (2003). J. Am. Chem. Soc. 125, 1002–1006. Web of Science CSD CrossRef PubMed CAS Google Scholar
Fujita, N., Shinkai, S. & James, T. D. (2008). Chem. Asian J. 3, 1076–1091. Web of Science CrossRef PubMed CAS Google Scholar
Hall, D. G. (2005). Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine. Weinheim: Wiley-VCH. Google Scholar
Höpfl, H. (2002). Structure and Bonding, edited by H. W. Roesky & D. A. Atwood, Vol. 103, pp. 1-56. Berlin: Springer Verlag. Google Scholar
Horton, P. N., Hursthouse, M. B., Beckett, M. A. & Rugen-Hankey, M. P. (2004). Acta Cryst. E60, o2204–o2206. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rodríguez-Cuamatzi, P., Arillo-Flores, O. I., Bernal-Uruchurtu, M. I. & Höpfl, H. (2005). Cryst. Growth Des. 5, 167–175. Google Scholar
Rodríguez-Cuamatzi, P., Vargas-Díaz, G. & Höpfl, H. (2004). Angew. Chem. Int. Ed. 43, 3041–3044. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Soloway, A. H., Tjarks, W., Barnum, B. A., Rong, R.-A., Barth, R. F., Codogni, I. M. & Wilson, J. G. (1998). Chem. Rev. 98, 1515–1562. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory Oxford, Oxford, England. Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
Wu, Y.-M., Dong, C.-C., Liu, S., Zhu, H.-J. & Wu, Y.-Z. (2006). Acta Cryst. E62, o4236–o4237. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Boronic acids, RB(OH)2 with R = alkyl and aryl, have applications in organic synthesis (Hall, 2005), host–guest chemistry (Höpfl, 2002), the molecular recognition of biochemically active molecules (Fujita et al., 2008) and in medicine as antibiotics, inhibitors and for the treatment of tumors (Soloway et al., 1998). Similar to carboxylic acids they are capable to form hydrogen-bonded dimeric units and, therefore, boronic acids have been used recently as new building blocks in crystal engineering (Fournier et al., 2003; Rodríguez-Cuamatzi et al., 2004; Rodríguez-Cuamatzi et al., 2005). Previously, the structures of 3-fluorophenylboronic acid (Wu et al., 2006), 2,6-difluoroboronic acid (Bradley et al., 1996) and pentafluoroboronic acid (Horton et al., 2004) had been reported. We now present the crystal structure of (I).
The molecular structure is essentially planar, O1—B1—C1—C2 = 4.4 (4)°, indicating that there is a π···π interaction between the dihydroxyboryl group and the aromatic ring, to which it is attached (Fig. 1). This interaction is also evidenced by the B—C bond length of 1.566 (3) Å, which is significantly shorter than that observed in boronates containing tetra-coordinate boron atoms (Höpfl, 2002). The crystal structure is stabilized by strong O2—H2···O1 hydrogen-bonding interactions, forming R22(8) motifs (Bernstein et al., 1995), as well as, O1—H1···F1 and O1—H1···F2 bifurcated hydrogen bonds (Fig. 2; Table 1) (Desiraju, 2002). Due to these interactions each boronic acid homodimer is linked to two neighboring homodimeric units, thus creating a two-dimensional hydrogen-bonded network, in which fluorine is therefore an essential structural component.