Related literature
For background, see: Mann et al. (1992
).
Experimental
Crystal data
[Cu(C6H3BrNO2)2(H2O)] Mr = 483.56 Triclinic, ![[P \overline 1]](teximages/hb2875fi1.gif) a = 6.9447 (8) Å b = 9.1350 (10) Å c = 11.4510 (13) Å α = 86.741 (2)° β = 84.056 (2)° γ = 76.728 (1)° V = 702.84 (14) Å3 Z = 2 Mo Kα radiation μ = 7.26 mm−1 T = 298 (2) K 0.18 × 0.14 × 0.08 mm
|
Data collection
Siemens SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996 ) Tmin = 0.354, Tmax = 0.594 (expected range = 0.333–0.559) 3669 measured reflections 2435 independent reflections 2137 reflections with I > 2σ(I) Rint = 0.018
|
Cu1—O1 | 1.912 (3) | Cu1—N2 | 1.985 (3) | Cu1—O5 | 2.022 (3) | Cu1—O3 | 2.072 (3) | Cu1—N1 | 2.148 (3) | | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O5—H5A⋯O1i | 0.85 | 1.93 | 2.765 (4) | 168 | O5—H5B⋯O4ii | 0.85 | 1.90 | 2.743 (4) | 169 | Symmetry codes: (i) -x+1, -y, -z+2; (ii) x+1, y, z. | |
Data collection: SMART (Siemens, 1996
); cell refinement: SAINT (Siemens, 1996
); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008
); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008
); molecular graphics: SHELXTL (Sheldrick, 2008
); software used to prepare material for publication: SHELXTL.
Supporting information
1 mmol (200.9 mg) of 6-bromopicolinic acid was added to 0.5 mmol (132 mg) of CuCl2 in 10 ml of anhydrous alcohol. The suspension was stirred for ca 4 h and filtered. After keeping the filtrate in air for one week, blue blocks of (I) precipitated. The crystals were isolated, washed with alcohol three times and dried in a vacuum desiccator using silica gel (Yield 75%). Elemental analysis: found C, 29.79; H, 1.68; N, 5.78; calc. for C12H8N2Br3O5Cu: C, 29.81; H, 1.67; N, 5.79.
The H atoms were positoned geometrically (C—H = 0.93Å, O—H = 0.85Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).
Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Aquabis(6-bromopicolinato-
κ2N,
O)copper(II)
top Crystal data top [Cu(C6H3BrNO2)2(H2O)] | Z = 2 |
Mr = 483.56 | F(000) = 466 |
Triclinic, P1 | Dx = 2.285 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.9447 (8) Å | Cell parameters from 2146 reflections |
b = 9.135 (1) Å | θ = 2.3–28.1° |
c = 11.4510 (13) Å | µ = 7.26 mm−1 |
α = 86.741 (2)° | T = 298 K |
β = 84.056 (2)° | Block, blue |
γ = 76.728 (1)° | 0.18 × 0.14 × 0.08 mm |
V = 702.84 (14) Å3 | |
Data collection top Siemens SMART CCD diffractometer | 2435 independent reflections |
Radiation source: fine-focus sealed tube | 2137 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ω scans | θmax = 25.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −7→8 |
Tmin = 0.354, Tmax = 0.594 | k = −9→10 |
3669 measured reflections | l = −13→12 |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0433P)2 + 0.8458P] where P = (Fo2 + 2Fc2)/3 |
2435 reflections | (Δ/σ)max = 0.001 |
199 parameters | Δρmax = 0.61 e Å−3 |
0 restraints | Δρmin = −0.59 e Å−3 |
Crystal data top [Cu(C6H3BrNO2)2(H2O)] | γ = 76.728 (1)° |
Mr = 483.56 | V = 702.84 (14) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.9447 (8) Å | Mo Kα radiation |
b = 9.135 (1) Å | µ = 7.26 mm−1 |
c = 11.4510 (13) Å | T = 298 K |
α = 86.741 (2)° | 0.18 × 0.14 × 0.08 mm |
β = 84.056 (2)° | |
Data collection top Siemens SMART CCD diffractometer | 2435 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2137 reflections with I > 2σ(I) |
Tmin = 0.354, Tmax = 0.594 | Rint = 0.018 |
3669 measured reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.61 e Å−3 |
2435 reflections | Δρmin = −0.59 e Å−3 |
199 parameters | |
Special details top Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cu1 | 0.36391 (7) | 0.20148 (5) | 0.83934 (4) | 0.02864 (15) | |
Br1 | 0.09458 (7) | 0.53067 (5) | 0.65643 (4) | 0.04093 (15) | |
Br2 | 0.66479 (7) | 0.36146 (5) | 0.64489 (4) | 0.04116 (15) | |
N1 | 0.2408 (5) | 0.4351 (4) | 0.8722 (3) | 0.0258 (7) | |
N2 | 0.3743 (5) | 0.1983 (3) | 0.6656 (3) | 0.0256 (7) | |
O1 | 0.3617 (5) | 0.1928 (3) | 1.0067 (2) | 0.0382 (7) | |
O2 | 0.3544 (5) | 0.3296 (4) | 1.1627 (3) | 0.0485 (8) | |
O3 | 0.1337 (4) | 0.0956 (4) | 0.8258 (3) | 0.0382 (7) | |
O4 | −0.0273 (4) | 0.0169 (3) | 0.6914 (3) | 0.0383 (7) | |
O5 | 0.6281 (5) | 0.0513 (4) | 0.8380 (3) | 0.0558 (10) | |
H5A | 0.6454 | −0.0203 | 0.8893 | 0.067* | |
H5B | 0.7377 | 0.0508 | 0.7972 | 0.067* | |
C1 | 0.3350 (6) | 0.3182 (5) | 1.0602 (3) | 0.0320 (9) | |
C2 | 0.2678 (5) | 0.4583 (5) | 0.9843 (3) | 0.0283 (9) | |
C3 | 0.2265 (6) | 0.6001 (5) | 1.0303 (4) | 0.0379 (10) | |
H3 | 0.2459 | 0.6118 | 1.1081 | 0.046* | |
C4 | 0.1558 (7) | 0.7247 (5) | 0.9590 (4) | 0.0417 (11) | |
H4 | 0.1324 | 0.8213 | 0.9871 | 0.050* | |
C5 | 0.1210 (6) | 0.7029 (5) | 0.8466 (4) | 0.0366 (10) | |
H5 | 0.0703 | 0.7839 | 0.7973 | 0.044* | |
C6 | 0.1633 (6) | 0.5563 (5) | 0.8081 (4) | 0.0294 (9) | |
C7 | 0.1021 (6) | 0.0759 (4) | 0.7223 (3) | 0.0281 (9) | |
C8 | 0.2405 (6) | 0.1316 (4) | 0.6261 (3) | 0.0276 (8) | |
C9 | 0.2250 (6) | 0.1216 (5) | 0.5081 (4) | 0.0346 (10) | |
H9 | 0.1292 | 0.0773 | 0.4831 | 0.042* | |
C10 | 0.3536 (7) | 0.1783 (5) | 0.4273 (4) | 0.0379 (10) | |
H10 | 0.3463 | 0.1712 | 0.3472 | 0.045* | |
C11 | 0.4922 (7) | 0.2450 (5) | 0.4658 (4) | 0.0364 (10) | |
H11 | 0.5812 | 0.2827 | 0.4128 | 0.044* | |
C12 | 0.4961 (6) | 0.2548 (4) | 0.5859 (3) | 0.0291 (9) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cu1 | 0.0328 (3) | 0.0302 (3) | 0.0214 (3) | −0.0060 (2) | −0.00068 (19) | 0.0041 (2) |
Br1 | 0.0450 (3) | 0.0414 (3) | 0.0322 (2) | −0.0002 (2) | −0.00934 (19) | 0.00599 (19) |
Br2 | 0.0424 (3) | 0.0467 (3) | 0.0401 (3) | −0.0234 (2) | −0.00604 (19) | 0.0080 (2) |
N1 | 0.0249 (17) | 0.0264 (17) | 0.0248 (17) | −0.0051 (14) | 0.0008 (13) | 0.0021 (13) |
N2 | 0.0277 (17) | 0.0233 (16) | 0.0234 (16) | −0.0040 (13) | 0.0016 (13) | 0.0044 (13) |
O1 | 0.0517 (19) | 0.0355 (17) | 0.0216 (14) | −0.0001 (14) | −0.0030 (13) | 0.0073 (12) |
O2 | 0.057 (2) | 0.066 (2) | 0.0218 (16) | −0.0124 (17) | −0.0057 (14) | 0.0033 (15) |
O3 | 0.0424 (18) | 0.0476 (18) | 0.0292 (16) | −0.0242 (14) | 0.0046 (13) | 0.0029 (13) |
O4 | 0.0373 (17) | 0.0439 (18) | 0.0385 (17) | −0.0202 (14) | −0.0019 (13) | −0.0003 (14) |
O5 | 0.047 (2) | 0.055 (2) | 0.045 (2) | 0.0162 (17) | 0.0127 (16) | 0.0257 (17) |
C1 | 0.025 (2) | 0.044 (3) | 0.026 (2) | −0.0064 (18) | 0.0013 (16) | 0.0013 (18) |
C2 | 0.0190 (19) | 0.037 (2) | 0.028 (2) | −0.0062 (16) | 0.0037 (15) | −0.0031 (17) |
C3 | 0.034 (2) | 0.045 (3) | 0.037 (2) | −0.012 (2) | 0.0014 (18) | −0.012 (2) |
C4 | 0.038 (3) | 0.035 (2) | 0.054 (3) | −0.012 (2) | 0.004 (2) | −0.010 (2) |
C5 | 0.030 (2) | 0.027 (2) | 0.049 (3) | −0.0039 (18) | 0.0033 (19) | 0.0047 (19) |
C6 | 0.0221 (19) | 0.036 (2) | 0.029 (2) | −0.0073 (17) | 0.0015 (16) | 0.0054 (17) |
C7 | 0.031 (2) | 0.023 (2) | 0.029 (2) | −0.0046 (16) | 0.0003 (16) | 0.0024 (16) |
C8 | 0.031 (2) | 0.0210 (19) | 0.029 (2) | −0.0027 (16) | −0.0025 (16) | 0.0045 (16) |
C9 | 0.041 (2) | 0.029 (2) | 0.034 (2) | −0.0060 (19) | −0.0069 (19) | −0.0024 (18) |
C10 | 0.052 (3) | 0.040 (3) | 0.021 (2) | −0.012 (2) | −0.0041 (19) | 0.0040 (18) |
C11 | 0.045 (3) | 0.032 (2) | 0.027 (2) | −0.0048 (19) | 0.0056 (18) | 0.0056 (18) |
C12 | 0.028 (2) | 0.028 (2) | 0.029 (2) | −0.0033 (17) | −0.0007 (16) | 0.0046 (16) |
Geometric parameters (Å, º) top Cu1—O1 | 1.912 (3) | C1—C2 | 1.514 (6) |
Cu1—N2 | 1.985 (3) | C2—C3 | 1.384 (6) |
Cu1—O5 | 2.022 (3) | C3—C4 | 1.387 (6) |
Cu1—O3 | 2.072 (3) | C3—H3 | 0.9300 |
Cu1—N1 | 2.148 (3) | C4—C5 | 1.367 (7) |
Br1—C6 | 1.889 (4) | C4—H4 | 0.9300 |
Br2—C12 | 1.882 (4) | C5—C6 | 1.391 (6) |
N1—C6 | 1.330 (5) | C5—H5 | 0.9300 |
N1—C2 | 1.351 (5) | C7—C8 | 1.529 (6) |
N2—C12 | 1.342 (5) | C8—C9 | 1.377 (6) |
N2—C8 | 1.348 (5) | C9—C10 | 1.382 (6) |
O1—C1 | 1.296 (5) | C9—H9 | 0.9300 |
O2—C1 | 1.208 (5) | C10—C11 | 1.371 (6) |
O3—C7 | 1.257 (5) | C10—H10 | 0.9300 |
O4—C7 | 1.239 (5) | C11—C12 | 1.387 (6) |
O5—H5A | 0.8499 | C11—H11 | 0.9300 |
O5—H5B | 0.8499 | | |
| | | |
O1—Cu1—N2 | 176.76 (12) | C4—C3—H3 | 120.4 |
O1—Cu1—O5 | 86.47 (13) | C5—C4—C3 | 118.8 (4) |
N2—Cu1—O5 | 90.80 (13) | C5—C4—H4 | 120.6 |
O1—Cu1—O3 | 98.49 (13) | C3—C4—H4 | 120.6 |
N2—Cu1—O3 | 80.87 (13) | C4—C5—C6 | 118.2 (4) |
O5—Cu1—O3 | 111.31 (14) | C4—C5—H5 | 120.9 |
O1—Cu1—N1 | 81.11 (12) | C6—C5—H5 | 120.9 |
N2—Cu1—N1 | 102.11 (12) | N1—C6—C5 | 124.4 (4) |
O5—Cu1—N1 | 139.28 (14) | N1—C6—Br1 | 118.9 (3) |
O3—Cu1—N1 | 108.83 (12) | C5—C6—Br1 | 116.6 (3) |
C6—N1—C2 | 116.5 (3) | O4—C7—O3 | 126.9 (4) |
C6—N1—Cu1 | 135.6 (3) | O4—C7—C8 | 117.7 (3) |
C2—N1—Cu1 | 107.6 (2) | O3—C7—C8 | 115.3 (4) |
C12—N2—C8 | 118.0 (3) | N2—C8—C9 | 122.1 (4) |
C12—N2—Cu1 | 127.6 (3) | N2—C8—C7 | 114.7 (3) |
C8—N2—Cu1 | 114.4 (3) | C9—C8—C7 | 123.2 (4) |
C1—O1—Cu1 | 118.1 (3) | C8—C9—C10 | 119.1 (4) |
C7—O3—Cu1 | 114.7 (3) | C8—C9—H9 | 120.4 |
Cu1—O5—H5A | 120.1 | C10—C9—H9 | 120.4 |
Cu1—O5—H5B | 130.5 | C11—C10—C9 | 119.6 (4) |
H5A—O5—H5B | 109.1 | C11—C10—H10 | 120.2 |
O2—C1—O1 | 125.5 (4) | C9—C10—H10 | 120.2 |
O2—C1—C2 | 119.8 (4) | C10—C11—C12 | 118.2 (4) |
O1—C1—C2 | 114.6 (3) | C10—C11—H11 | 120.9 |
N1—C2—C3 | 122.8 (4) | C12—C11—H11 | 120.9 |
N1—C2—C1 | 116.0 (3) | N2—C12—C11 | 122.9 (4) |
C3—C2—C1 | 121.2 (4) | N2—C12—Br2 | 116.4 (3) |
C2—C3—C4 | 119.1 (4) | C11—C12—Br2 | 120.5 (3) |
C2—C3—H3 | 120.4 | | |
| | | |
O1—Cu1—N1—C6 | −172.9 (4) | O2—C1—C2—C3 | −0.5 (6) |
N2—Cu1—N1—C6 | 7.5 (4) | O1—C1—C2—C3 | 177.7 (4) |
O5—Cu1—N1—C6 | 113.2 (4) | N1—C2—C3—C4 | −0.5 (6) |
O3—Cu1—N1—C6 | −76.9 (4) | C1—C2—C3—C4 | −176.8 (4) |
O1—Cu1—N1—C2 | 13.3 (3) | C2—C3—C4—C5 | 2.8 (6) |
N2—Cu1—N1—C2 | −166.3 (2) | C3—C4—C5—C6 | −1.7 (6) |
O5—Cu1—N1—C2 | −60.6 (3) | C2—N1—C6—C5 | 4.0 (6) |
O3—Cu1—N1—C2 | 109.3 (2) | Cu1—N1—C6—C5 | −169.3 (3) |
O1—Cu1—N2—C12 | −103 (2) | C2—N1—C6—Br1 | −173.3 (3) |
O5—Cu1—N2—C12 | −70.2 (3) | Cu1—N1—C6—Br1 | 13.4 (5) |
O3—Cu1—N2—C12 | 178.3 (3) | C4—C5—C6—N1 | −1.9 (6) |
N1—Cu1—N2—C12 | 70.9 (3) | C4—C5—C6—Br1 | 175.5 (3) |
O1—Cu1—N2—C8 | 78 (2) | Cu1—O3—C7—O4 | −179.4 (3) |
O5—Cu1—N2—C8 | 110.3 (3) | Cu1—O3—C7—C8 | 0.8 (4) |
O3—Cu1—N2—C8 | −1.2 (3) | C12—N2—C8—C9 | −0.6 (5) |
N1—Cu1—N2—C8 | −108.6 (3) | Cu1—N2—C8—C9 | 179.0 (3) |
N2—Cu1—O1—C1 | 160 (2) | C12—N2—C8—C7 | −177.7 (3) |
O5—Cu1—O1—C1 | 127.0 (3) | Cu1—N2—C8—C7 | 1.9 (4) |
O3—Cu1—O1—C1 | −122.0 (3) | O4—C7—C8—N2 | 178.3 (3) |
N1—Cu1—O1—C1 | −14.1 (3) | O3—C7—C8—N2 | −1.8 (5) |
O1—Cu1—O3—C7 | −176.6 (3) | O4—C7—C8—C9 | 1.3 (6) |
N2—Cu1—O3—C7 | 0.2 (3) | O3—C7—C8—C9 | −178.8 (4) |
O5—Cu1—O3—C7 | −87.1 (3) | N2—C8—C9—C10 | 1.6 (6) |
N1—Cu1—O3—C7 | 100.0 (3) | C7—C8—C9—C10 | 178.4 (4) |
Cu1—O1—C1—O2 | −170.2 (4) | C8—C9—C10—C11 | −0.9 (6) |
Cu1—O1—C1—C2 | 11.7 (5) | C9—C10—C11—C12 | −0.8 (6) |
C6—N1—C2—C3 | −2.8 (6) | C8—N2—C12—C11 | −1.2 (6) |
Cu1—N1—C2—C3 | 172.3 (3) | Cu1—N2—C12—C11 | 179.3 (3) |
C6—N1—C2—C1 | 173.6 (3) | C8—N2—C12—Br2 | 174.8 (3) |
Cu1—N1—C2—C1 | −11.2 (4) | Cu1—N2—C12—Br2 | −4.7 (4) |
O2—C1—C2—N1 | −176.9 (4) | C10—C11—C12—N2 | 1.9 (6) |
O1—C1—C2—N1 | 1.2 (5) | C10—C11—C12—Br2 | −174.0 (3) |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O1i | 0.85 | 1.93 | 2.765 (4) | 168 |
O5—H5B···O4ii | 0.85 | 1.90 | 2.743 (4) | 169 |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) x+1, y, z. |
Experimental details
Crystal data |
Chemical formula | [Cu(C6H3BrNO2)2(H2O)] |
Mr | 483.56 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 6.9447 (8), 9.135 (1), 11.4510 (13) |
α, β, γ (°) | 86.741 (2), 84.056 (2), 76.728 (1) |
V (Å3) | 702.84 (14) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 7.26 |
Crystal size (mm) | 0.18 × 0.14 × 0.08 |
|
Data collection |
Diffractometer | Siemens SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.354, 0.594 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3669, 2435, 2137 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.595 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.082, 1.02 |
No. of reflections | 2435 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.61, −0.59 |
Selected bond lengths (Å) topCu1—O1 | 1.912 (3) | Cu1—O3 | 2.072 (3) |
Cu1—N2 | 1.985 (3) | Cu1—N1 | 2.148 (3) |
Cu1—O5 | 2.022 (3) | | |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O1i | 0.85 | 1.93 | 2.765 (4) | 168 |
O5—H5B···O4ii | 0.85 | 1.90 | 2.743 (4) | 169 |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) x+1, y, z. |
Acknowledgements
The authors thank the National Natural Science Foundation of China (20761002), the Natural Science Foundation of Guangxi (0832080), the Ministry of Education, Science and Technology Key projects (205121) and the Science Foundation of the State Ethnic Affairs Commission (07GX05). This project was supported by the Open Fund of the Key Laboratory of Development & Application of Forest Chemicals of Guangxi (GXFC08–07), the Fund of the Talent Highland Research Program of Guangxi University, the Development Foundation of Guangxi Research Institute of the Chemical Industry, the Science Foundation of Guangxi University for Nationalities (0409032, 0409012, 0509ZD047) and the Innovation Project of Guangxi University for Nationalities (gxun-chx0876).
References
Mann, Y., Chiment, F., Balasco, A., Cenicola, M. L., Amico, M. D., Parrilo, C., Rossi, F. & Marmo, E. (1992). Eur. J. Med. Chem. 27, 633–639. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-Ray Systems, Inc., Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open

access
The chemical and pharmacological properties of pyridine derivatives have been investigated extensively, owing to their chelating ability with metal ions and their potentially beneficial chemical and biological activities (e.g. Mann et al., 1992). As part of our studies on the synthesis and characterization of these compounds, we report here the synthesis and crystal structure of the title compound, (I), (Fig. 1).
The copper centre in (I) adopts distorted trigonal biyramid coordination geometry by being coordinated with two nitrogen atoms from the pyridine rings and three oxygen atoms from the ligands (Table 1). The dihedral angle of the two pyridine rings is 67.6 (2)°.
Analysis of the crystal packing of the title compound reveals the existence of intermolecular O—H···O hydrogen bonds between the carboxyl oxygen atoms and coordinated water molecule (Fig. 2), forming a one-dimensional chain parallel to the a-axis. The coordinated water molecule acts as a hydrogen-bond donor towards O1 and O4 of the adjacent complexes (Table 2), the carboxylate group that acts as an H bond acceptor towards the O5 via both of its O atoms O4 and O3 exhibits a delocalized π system with nearly identical C—O distances.