metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(5-methyl­pyridine-2-carboxyl­ato-κ2N,O)zinc(II)

aCollege of Bioengineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: taixishi@lzu.edu.cn

(Received 13 December 2008; accepted 14 December 2008; online 20 December 2008)

In the title compound, [Zn(C7H6NO2)2(H2O)2], the Zn atom (site symmetry [\overline{1}]) adopts a distorted trans-ZnN2O4 octa­hedral coordination arising from two N,O-bidentate 5-methyl­pyridine-2-carboxyl­ate ligands and two water mol­ecules. In the crystal structure, mol­ecules form a layered network linked by O—H⋯O hydrogen bonds.

Related literature

For background, see: Hagrman et al. (1998[Hagrman, D., Hammond, R. P. & Haushalter, R. (1998). Chem. Mater. 10, 2091-2096.]); Ranford et al. (1998[Ranford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226-1231.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H6NO2)2(H2O)2]

  • Mr = 373.66

  • Triclinic, [P \overline 1]

  • a = 5.1703 (6) Å

  • b = 6.4620 (10) Å

  • c = 12.2781 (14) Å

  • α = 104.678 (2)°

  • β = 90.646 (1)°

  • γ = 109.493 (2)°

  • V = 372.01 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.68 mm−1

  • T = 298 (2) K

  • 0.49 × 0.46 × 0.27 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.493, Tmax = 0.659

  • 1917 measured reflections

  • 1275 independent reflections

  • 1260 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.15

  • 1275 reflections

  • 108 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 2.104 (2)
Zn1—O3 2.134 (2)
Zn1—N1 2.116 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.85 1.88 2.693 (4) 160
O3—H3B⋯O1ii 0.85 1.94 2.757 (3) 160
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our efforts to achieve supramolecular transition metal complexes by self-assembly (Ranford, et al., 1998; Hagrman, et al., 1998), we now report on the synthesis and crystal structure of the title compound, (I), (Fig. 1).

The ZnII centre in (I) is six-coordinate with two O donors of H2O, and two N,O-bidentate ligands (Table 1). In the crystal packing, the molecules form a layers linked by O—H···O hydrogen bonds (Table 2).

Related literature top

For background, see: Hagrman et al. (1998); Ranford et al. (1998).

Experimental top

A solution of 1.0 mmol 5-methylpyridine-2-carboxylic acid and 1.0 mmol NaOH in 5 ml 95% ethanol was added to a solution of 0.5 mmol Zn(CH3COO)2.4H2O in 5 ml ethanol at room temperature. The mixture was refluxed for 2 h with stirring, then the resulting precipitate was filtered, washed, and dried in vacuo over P4O10 for 48 h. Colourless blocks of (I) were obtained by slowly evaporating from methanol at room temperature.

Refinement top

The H atoms were geometrically placed (C—H = 0.93-0.96Å, O—H = 0.85Å) and refined as riding with Uiso(H) = 1.2Ueq(C, O) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids for the non-hydrogen atoms. Symmetry code: (i) 1–x, 1–y, 1–z.
Diaquabis(5-methylpyridine-2-carboxylato-κ2N,O)zinc(II) top
Crystal data top
[Zn(C7H6NO2)2(H2O)2]Z = 1
Mr = 373.66F(000) = 192
Triclinic, P1Dx = 1.668 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.1703 (6) ÅCell parameters from 1975 reflections
b = 6.462 (1) Åθ = 3.4–27.9°
c = 12.2781 (14) ŵ = 1.68 mm1
α = 104.678 (2)°T = 298 K
β = 90.646 (1)°Block, colourless
γ = 109.493 (2)°0.49 × 0.46 × 0.27 mm
V = 372.01 (8) Å3
Data collection top
Bruker SMART CCD
diffractometer
1275 independent reflections
Radiation source: fine-focus sealed tube1260 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 63
Tmin = 0.493, Tmax = 0.659k = 67
1917 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0603P)2 + 0.3083P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
1275 reflectionsΔρmax = 0.63 e Å3
108 parametersΔρmin = 0.60 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.094 (11)
Crystal data top
[Zn(C7H6NO2)2(H2O)2]γ = 109.493 (2)°
Mr = 373.66V = 372.01 (8) Å3
Triclinic, P1Z = 1
a = 5.1703 (6) ÅMo Kα radiation
b = 6.462 (1) ŵ = 1.68 mm1
c = 12.2781 (14) ÅT = 298 K
α = 104.678 (2)°0.49 × 0.46 × 0.27 mm
β = 90.646 (1)°
Data collection top
Bruker SMART CCD
diffractometer
1275 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1260 reflections with I > 2σ(I)
Tmin = 0.493, Tmax = 0.659Rint = 0.013
1917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.15Δρmax = 0.63 e Å3
1275 reflectionsΔρmin = 0.60 e Å3
108 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50000.50000.0269 (2)
N10.4060 (5)0.5257 (4)0.6691 (2)0.0265 (5)
C40.3260 (7)0.5138 (6)0.8903 (2)0.0351 (7)
H40.29790.50790.96430.042*
O10.6819 (4)0.2811 (3)0.54326 (17)0.0298 (5)
O20.7442 (5)0.1369 (4)0.6842 (2)0.0399 (6)
O30.1258 (4)0.2198 (4)0.4350 (2)0.0368 (5)
H3A0.14100.09050.40680.044*
H3B0.01990.20480.46830.044*
C10.6533 (6)0.2552 (5)0.6414 (2)0.0266 (6)
C20.4953 (6)0.3907 (5)0.7150 (2)0.0269 (6)
C30.4520 (8)0.3852 (6)0.8251 (3)0.0417 (8)
H30.51240.28870.85500.050*
C60.2809 (6)0.6541 (5)0.7341 (3)0.0309 (6)
H60.21750.74900.70400.037*
C50.2430 (6)0.6500 (6)0.8452 (3)0.0351 (7)
C70.1086 (8)0.8011 (7)0.9188 (3)0.0500 (9)
H7A0.00930.71860.96500.075*
H7B0.00100.84730.87180.075*
H7C0.24830.93370.96640.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0346 (3)0.0309 (3)0.0229 (3)0.0191 (2)0.00841 (19)0.01007 (19)
N10.0300 (12)0.0281 (12)0.0253 (12)0.0143 (10)0.0049 (10)0.0083 (10)
C40.0477 (18)0.0513 (19)0.0163 (13)0.0286 (15)0.0102 (12)0.0108 (13)
O10.0357 (11)0.0321 (11)0.0293 (11)0.0209 (9)0.0098 (8)0.0089 (9)
O20.0559 (14)0.0394 (12)0.0369 (12)0.0323 (11)0.0035 (10)0.0111 (10)
O30.0337 (11)0.0298 (11)0.0486 (13)0.0161 (9)0.0117 (10)0.0067 (10)
C10.0274 (13)0.0224 (13)0.0306 (15)0.0109 (11)0.0018 (11)0.0052 (11)
C20.0304 (14)0.0264 (13)0.0252 (14)0.0119 (11)0.0036 (11)0.0066 (11)
C30.054 (2)0.051 (2)0.0337 (17)0.0306 (17)0.0084 (15)0.0194 (15)
C60.0349 (15)0.0321 (15)0.0313 (15)0.0196 (12)0.0078 (12)0.0076 (12)
C50.0341 (15)0.0399 (17)0.0289 (15)0.0146 (13)0.0065 (12)0.0029 (13)
C70.054 (2)0.059 (2)0.0395 (19)0.0315 (19)0.0155 (16)0.0005 (17)
Geometric parameters (Å, º) top
Zn1—O12.104 (2)O2—C11.232 (4)
Zn1—O32.134 (2)O3—H3A0.8499
Zn1—O1i2.104 (2)O3—H3B0.8499
Zn1—N1i2.116 (2)C1—C21.531 (4)
Zn1—N12.116 (2)C2—C31.380 (4)
Zn1—O3i2.134 (2)C3—H30.9300
N1—C61.334 (4)C6—C51.387 (5)
N1—C21.343 (4)C6—H60.9300
C4—C51.327 (5)C5—C71.507 (4)
C4—C31.338 (5)C7—H7A0.9600
C4—H40.9300C7—H7B0.9600
O1—C11.262 (4)C7—H7C0.9600
O1—Zn1—O1i180.0Zn1—O3—H3B121.9
O1—Zn1—N1i100.78 (8)H3A—O3—H3B110.5
O1i—Zn1—N1i79.22 (8)O2—C1—O1126.8 (3)
O1—Zn1—N179.22 (8)O2—C1—C2117.3 (3)
O1i—Zn1—N1100.78 (8)O1—C1—C2115.9 (2)
N1i—Zn1—N1180.0N1—C2—C3120.1 (3)
O1—Zn1—O3i89.38 (9)N1—C2—C1116.9 (2)
O1i—Zn1—O3i90.62 (9)C3—C2—C1123.0 (3)
N1i—Zn1—O3i92.23 (9)C4—C3—C2122.3 (3)
N1—Zn1—O3i87.77 (9)C4—C3—H3118.8
O1—Zn1—O390.62 (9)C2—C3—H3118.8
O1i—Zn1—O389.38 (9)N1—C6—C5121.7 (3)
N1i—Zn1—O387.77 (9)N1—C6—H6119.1
N1—Zn1—O392.23 (9)C5—C6—H6119.1
O3i—Zn1—O3180.0C4—C5—C6120.9 (3)
C6—N1—C2117.7 (2)C4—C5—C7117.9 (3)
C6—N1—Zn1130.4 (2)C6—C5—C7121.2 (3)
C2—N1—Zn1111.95 (18)C5—C7—H7A109.5
C5—C4—C3117.3 (3)C5—C7—H7B109.5
C5—C4—H4121.3H7A—C7—H7B109.5
C3—C4—H4121.3C5—C7—H7C109.5
C1—O1—Zn1115.99 (17)H7A—C7—H7C109.5
Zn1—O3—H3A116.6H7B—C7—H7C109.5
O1—Zn1—N1—C6176.5 (3)C6—N1—C2—C1176.5 (2)
O1i—Zn1—N1—C63.5 (3)Zn1—N1—C2—C12.3 (3)
O3i—Zn1—N1—C686.7 (3)O2—C1—C2—N1177.6 (3)
O3—Zn1—N1—C693.3 (3)O1—C1—C2—N10.9 (4)
O1—Zn1—N1—C22.21 (19)O2—C1—C2—C30.0 (4)
O1i—Zn1—N1—C2177.79 (19)O1—C1—C2—C3178.5 (3)
O3i—Zn1—N1—C292.0 (2)C5—C4—C3—C20.2 (6)
O3—Zn1—N1—C288.0 (2)N1—C2—C3—C41.1 (5)
N1i—Zn1—O1—C1178.1 (2)C1—C2—C3—C4176.4 (3)
N1—Zn1—O1—C11.9 (2)C2—N1—C6—C50.0 (4)
O3i—Zn1—O1—C189.7 (2)Zn1—N1—C6—C5178.6 (2)
O3—Zn1—O1—C190.3 (2)C3—C4—C5—C61.3 (5)
Zn1—O1—C1—O2179.4 (2)C3—C4—C5—C7178.2 (3)
Zn1—O1—C1—C21.2 (3)N1—C6—C5—C41.3 (5)
C6—N1—C2—C31.2 (4)N1—C6—C5—C7178.2 (3)
Zn1—N1—C2—C3180.0 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2ii0.851.882.693 (4)160
O3—H3B···O1iii0.851.942.757 (3)160
Symmetry codes: (ii) x+1, y, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C7H6NO2)2(H2O)2]
Mr373.66
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.1703 (6), 6.462 (1), 12.2781 (14)
α, β, γ (°)104.678 (2), 90.646 (1), 109.493 (2)
V3)372.01 (8)
Z1
Radiation typeMo Kα
µ (mm1)1.68
Crystal size (mm)0.49 × 0.46 × 0.27
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.493, 0.659
No. of measured, independent and
observed [I > 2σ(I)] reflections
1917, 1275, 1260
Rint0.013
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.15
No. of reflections1275
No. of parameters108
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.60

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O12.104 (2)Zn1—N12.116 (2)
Zn1—O32.134 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.851.882.693 (4)160
O3—H3B···O1ii0.851.942.757 (3)160
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z.
 

Acknowledgements

The author thanks the Science and Technology Foundation of Weifang (2008–19) for a research grant.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHagrman, D., Hammond, R. P. & Haushalter, R. (1998). Chem. Mater. 10, 2091–2096.  Web of Science CSD CrossRef CAS Google Scholar
First citationRanford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226–1231.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds