organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Fluoro-N-o-tolyl­benzamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 15 December 2008; accepted 18 December 2008; online 24 December 2008)

In the title compound, C14H12FNO, the ortho-F atom and corresponding H atom on the fluoro­benzene ring are disordered over two positions with occupancies of 0.856 (4) and 0.144 (4). The amide unit is planar with a maximum deviation of 0.0057 (16) Å and the amide plane makes dihedral angles of 38.27 (11)° with the fluoro­benzene ring plane and 37.53 (10)° with the tolyl ring. The two benzene rings are inclined at an angle of 4.17 (15)°. In the crystal structure, chains form along b through N—H⋯O hydrogen bonds augmented by C—H⋯π inter­actions. Additional inter­molecular C—H⋯O and C—H⋯F hydrogen bonds further stabilize the structure, forming layers in the ac plane.

Related literature

For related structures, see: Chopra & Guru Row (2008[Chopra, D. & Guru Row, T. N. (2008). CrystEngComm, 10, 54-67.]); Donnelly et al. (2008[Donnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335-o340.]); Hou et al. (2004[Hou, Z.-K., Ao, C.-C., Song, J. & Chen, L.-G. (2004). Acta Cryst. E60, o1957-o1958.]); Saeed et al. (2008[Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o2187.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12FNO

  • Mr = 229.25

  • Monoclinic, P 21 /n

  • a = 10.749 (4) Å

  • b = 4.8245 (17) Å

  • c = 21.580 (7) Å

  • β = 93.820 (19)°

  • V = 1116.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 93 (2) K

  • 0.25 × 0.15 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.779, Tmax = 0.995

  • 7896 measured reflections

  • 1228 independent reflections

  • 925 reflections with I > 2σ(I)

  • Rint = 0.067

  • θmax = 21.3°

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.108

  • S = 1.06

  • 1228 reflections

  • 169 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O1i 0.85 (3) 2.08 (3) 2.887 (3) 158 (2)
C6—H6⋯F1′ii 0.95 2.60 3.219 (11) 123
C12—H12⋯O1iii 0.95 2.63 3.434 (3) 143
C12—H12⋯F1′iii 0.95 2.40 3.287 (11) 154
C14—H14CCg1i 0.98 2.98 3.702 (3) 131
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+3, -z. Cg1 is the centroid of the C8–C13 benzene ring.

Data collection: APEX2 (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

As part of our ongoing work on the structure of benzanilides and related compounds (Saeed et al., 2008), we report here the structure of the title 2-fluorobenzamide derivative, (I), Fig 1. The C2—C1—O1—N1—C8 unit is almost planar with a maximum deviation of 0.0057 (16)Å for N1. This plane makes dihedral angles of 38.27 (11) ° with the fluorobenzene ring plane and 37.53 (10)° with the tolyl ring. The two benzene rings are inclined at an angle of 4.17 (15)° giving the molecule a stepped structure. Bond distances in the molecule are not unusual (Allen et al., 1987) and agree well with those reported previously (see for example Chopra & Guru Row, 2008; Donnelly et al., 2008; Hou et al., 2004, Saeed et al., 2008).

In the crystal structure, chains form along b through N—H···O hydrogen bonds augmented by C—H···π interactions involving the methyl group and the tolyl rings (Table 1, Fig. 2). Additional intermolecular C—H···O and C—H···F hydrogen bonds further stabilize the structure forming layers in the ac plane, that stack down the b axis (Fig. 3).

Related literature top

For related structures, see: Chopra & Guru Row (2008); Donnelly et al. (2008); Hou et al. (2004); Saeed et al. (2008). For reference structural data, see: Allen et al. (1987). Cg2 is the centroid of the C8–C13 benzene ring.

Experimental top

2-Fluorobenzoyl chloride (5.4 mmol) in CHCl3 was treated with 2-methylaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with 1 M aqueous HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. Crystallization of the residue from CHCl3 afforded (I) as colourless needles in an81% yield: Anal. calcd. for C14H12FNO: C 73.35, H 5.28, N 6.11%; found: C 73.30, H 5.32, N 6.09%

Refinement top

The H atom bound to N1 was located in a difference electron density map and refined freely with an isotropic displacement parameter. All other H-atoms were refined using a riding model with C—H = 0.95 Å, Uiso= 1.2Ueq (C) for aromatic and 0.98 Å, Uiso = 1.5Ueq (C) for methyl H atoms. The ortho-F atom and corresponding H atom on the fluorobenzene ring are disordered over two positions with occupancies 0.856 (4) and 0.144 (4). Crystals were very small and weakly diffracting, with no significant data obtained beyond θ = 21°

Computing details top

Data collection: APEX2 (Bruker 2006); cell refinement: APEX2 and SAINT (Bruker 2006); data reduction: SAINT (Bruker 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. For clarity atoms of the minor disorder component have been omitted.
[Figure 2] Fig. 2. Chains formed along a by N—H···O hydrogen bonds (dashed lines) and C—H···π interactions (dotted lines). Spheres represent the centroids of C8···C13 benzene rings.
[Figure 3] Fig. 3. Crystal packing of (I) viewed down the b axis with hydrogen bonds drawn as dashed lines.
2-Fluoro-N-o-tolylbenzamide top
Crystal data top
C14H12FNOF(000) = 480
Mr = 229.25Dx = 1.364 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1374 reflections
a = 10.749 (4) Åθ = 3.3–21.2°
b = 4.8245 (17) ŵ = 0.10 mm1
c = 21.580 (7) ÅT = 93 K
β = 93.820 (19)°Rectangular plate, colourless
V = 1116.6 (7) Å30.25 × 0.15 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1228 independent reflections
Radiation source: fine-focus sealed tube925 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 21.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1010
Tmin = 0.779, Tmax = 0.995k = 44
7896 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0633P)2]
where P = (Fo2 + 2Fc2)/3
1228 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H12FNOV = 1116.6 (7) Å3
Mr = 229.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.749 (4) ŵ = 0.10 mm1
b = 4.8245 (17) ÅT = 93 K
c = 21.580 (7) Å0.25 × 0.15 × 0.05 mm
β = 93.820 (19)°
Data collection top
Bruker APEXII CCD
diffractometer
1228 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
925 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.995Rint = 0.067
7896 measured reflectionsθmax = 21.3°
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.19 e Å3
1228 reflectionsΔρmin = 0.21 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5852 (2)1.1330 (5)0.13062 (12)0.0203 (7)
O10.57188 (16)1.3797 (3)0.11721 (8)0.0291 (6)
C20.5376 (2)1.0250 (4)0.18985 (11)0.0177 (7)
C70.4271 (2)1.1328 (5)0.20975 (13)0.0229 (7)
H70.38281.26770.18500.027*0.856 (4)
F10.71053 (15)0.7317 (3)0.21278 (8)0.0296 (7)0.856 (4)
C30.5996 (2)0.8335 (5)0.22854 (13)0.0242 (7)
H30.67570.75770.21620.029*0.144 (4)
F1'0.3678 (10)1.321 (2)0.1771 (6)0.046 (4)0.144 (4)
C40.5566 (3)0.7481 (5)0.28378 (13)0.0302 (7)
H40.60220.61790.30930.036*
C50.4450 (3)0.8563 (5)0.30152 (13)0.0284 (7)
H50.41260.79790.33930.034*
C60.3806 (2)1.0486 (5)0.26455 (12)0.0270 (7)
H60.30431.12280.27690.032*
N10.64105 (18)0.9476 (5)0.09499 (10)0.0197 (6)
HN10.639 (2)0.781 (5)0.1077 (12)0.028 (8)*
C80.6910 (2)1.0053 (4)0.03731 (11)0.0173 (7)
C90.8010 (2)0.8696 (4)0.02298 (12)0.0186 (7)
C140.8660 (2)0.6685 (5)0.06812 (12)0.0243 (7)
H14A0.88010.75740.10880.036*
H14B0.94630.61400.05280.036*
H14C0.81380.50370.07200.036*
C100.8481 (2)0.9264 (5)0.03388 (12)0.0242 (7)
H100.92200.83530.04460.029*
C110.7908 (2)1.1116 (5)0.07566 (12)0.0264 (7)
H110.82571.14800.11410.032*
C120.6822 (2)1.2436 (5)0.06095 (13)0.0235 (7)
H120.64211.37040.08940.028*
C130.6326 (2)1.1905 (5)0.00504 (12)0.0205 (7)
H130.55791.28070.00490.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0195 (15)0.0157 (16)0.0256 (18)0.0019 (12)0.0003 (13)0.0007 (13)
O10.0434 (12)0.0128 (11)0.0326 (12)0.0013 (8)0.0142 (9)0.0032 (8)
C20.0229 (15)0.0104 (13)0.0197 (16)0.0033 (12)0.0005 (13)0.0007 (11)
C70.0246 (16)0.0188 (15)0.0253 (18)0.0012 (13)0.0015 (14)0.0003 (12)
F10.0306 (11)0.0303 (11)0.0279 (12)0.0111 (9)0.0007 (9)0.0041 (8)
C30.0245 (17)0.0213 (16)0.0268 (19)0.0004 (12)0.0028 (14)0.0024 (12)
F1'0.050 (8)0.044 (8)0.046 (9)0.018 (6)0.011 (6)0.015 (6)
C40.0394 (18)0.0271 (16)0.0236 (19)0.0024 (14)0.0015 (15)0.0038 (13)
C50.0409 (18)0.0276 (16)0.0170 (17)0.0117 (14)0.0051 (14)0.0006 (12)
C60.0278 (16)0.0292 (16)0.0246 (18)0.0018 (13)0.0060 (13)0.0021 (13)
N10.0258 (13)0.0101 (13)0.0239 (15)0.0023 (11)0.0060 (11)0.0022 (11)
C80.0203 (15)0.0113 (14)0.0206 (17)0.0051 (11)0.0028 (13)0.0002 (11)
C90.0212 (15)0.0125 (14)0.0216 (17)0.0031 (11)0.0008 (13)0.0027 (11)
C140.0244 (15)0.0227 (15)0.0259 (18)0.0031 (12)0.0022 (13)0.0016 (12)
C100.0234 (15)0.0241 (15)0.0255 (18)0.0002 (13)0.0040 (13)0.0049 (13)
C110.0305 (17)0.0291 (16)0.0199 (17)0.0047 (13)0.0043 (14)0.0017 (13)
C120.0295 (16)0.0188 (15)0.0216 (18)0.0042 (13)0.0033 (13)0.0034 (12)
C130.0173 (14)0.0163 (14)0.0278 (19)0.0020 (11)0.0007 (13)0.0003 (12)
Geometric parameters (Å, º) top
C1—O11.231 (3)N1—C81.416 (3)
C1—N11.347 (3)N1—HN10.85 (3)
C1—C21.501 (3)C8—C131.397 (3)
C2—C31.386 (3)C8—C91.404 (3)
C2—C71.390 (3)C9—C101.385 (4)
C7—F1'1.292 (10)C9—C141.512 (3)
C7—C61.375 (4)C14—H14A0.9800
C7—H70.9500C14—H14B0.9800
F1—C31.354 (3)C14—H14C0.9800
C3—C41.370 (4)C10—C111.384 (3)
C3—H30.9500C10—H100.9500
C4—C51.385 (4)C11—C121.385 (4)
C4—H40.9500C11—H110.9500
C5—C61.379 (4)C12—C131.375 (4)
C5—H50.9500C12—H120.9500
C6—H60.9500C13—H130.9500
O1—C1—N1123.9 (2)C13—C8—N1121.4 (2)
O1—C1—C2119.7 (2)C9—C8—N1118.4 (2)
N1—C1—C2116.5 (2)C13—C8—C14i76.61 (13)
C3—C2—C7116.7 (2)C9—C8—C14i90.97 (14)
C3—C2—C1124.5 (2)N1—C8—C14i103.13 (14)
C7—C2—C1118.6 (2)C10—C9—C8117.7 (2)
F1'—C7—C6118.8 (6)C10—C9—C14121.2 (2)
F1'—C7—C2119.7 (6)C8—C9—C14121.1 (2)
C6—C7—C2121.4 (2)C9—C14—H14A109.5
C6—C7—H7119.3C9—C14—H14B109.5
C2—C7—H7119.3H14A—C14—H14B109.5
F1—C3—C4117.6 (2)C9—C14—H14C109.5
F1—C3—C2119.1 (2)H14A—C14—H14C109.5
C4—C3—C2123.2 (2)H14B—C14—H14C109.5
C4—C3—H3118.4C11—C10—C9122.1 (2)
C2—C3—H3118.4C11—C10—H10118.9
C3—C4—C5118.4 (3)C9—C10—H10118.9
C3—C4—H4120.8C10—C11—C12119.5 (3)
C5—C4—H4120.8C10—C11—H11120.2
C6—C5—C4120.2 (3)C12—C11—H11120.2
C6—C5—H5119.9C13—C12—C11119.8 (2)
C4—C5—H5119.9C13—C12—H12120.1
C5—C6—C7120.0 (3)C11—C12—H12120.1
C5—C6—H6120.0C12—C13—C8120.6 (2)
C7—C6—H6120.0C12—C13—C14i88.08 (15)
C1—N1—C8125.5 (2)C8—C13—C14i81.74 (14)
C1—N1—HN1115.0 (18)C12—C13—H13119.7
C8—N1—HN1119.2 (18)C8—C13—H13119.7
C13—C8—C9120.2 (2)C14i—C13—H13100.3
O1—C1—C2—C3140.1 (3)C1—N1—C8—C1337.4 (3)
N1—C1—C2—C339.8 (3)C1—N1—C8—C9143.2 (2)
O1—C1—C2—C736.3 (3)C1—N1—C8—C14i44.8 (3)
N1—C1—C2—C7143.8 (2)C13—C8—C9—C100.0 (3)
C3—C2—C7—F1'176.9 (6)N1—C8—C9—C10179.4 (2)
C1—C2—C7—F1'0.3 (7)C14i—C8—C9—C1075.1 (2)
C3—C2—C7—C61.4 (3)C13—C8—C9—C14179.9 (2)
C1—C2—C7—C6178.0 (2)N1—C8—C9—C140.6 (3)
C7—C2—C3—F1176.9 (2)C14i—C8—C9—C14104.9 (2)
C1—C2—C3—F10.5 (3)C8—C9—C10—C110.6 (3)
C7—C2—C3—C40.5 (4)C14—C9—C10—C11179.4 (2)
C1—C2—C3—C4176.9 (2)C9—C10—C11—C120.7 (4)
F1—C3—C4—C5178.2 (2)C10—C11—C12—C130.3 (4)
C2—C3—C4—C50.7 (4)C11—C12—C13—C80.3 (3)
C3—C4—C5—C61.0 (4)C11—C12—C13—C14i79.5 (2)
C4—C5—C6—C70.2 (4)C9—C8—C13—C120.4 (3)
F1'—C7—C6—C5177.3 (6)N1—C8—C13—C12179.8 (2)
C2—C7—C6—C51.0 (4)C14i—C8—C13—C1282.8 (2)
O1—C1—N1—C80.8 (4)C9—C8—C13—C14i83.2 (2)
C2—C1—N1—C8179.30 (19)N1—C8—C13—C14i97.4 (2)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O1ii0.85 (3)2.08 (3)2.887 (3)158 (2)
C6—H6···F1iii0.952.603.219 (11)123
C12—H12···O1iv0.952.633.434 (3)143
C12—H12···F1iv0.952.403.287 (11)154
C14—H14C···Cg1ii0.982.983.702 (3)131
Symmetry codes: (ii) x, y1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y+3, z.

Experimental details

Crystal data
Chemical formulaC14H12FNO
Mr229.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)93
a, b, c (Å)10.749 (4), 4.8245 (17), 21.580 (7)
β (°) 93.820 (19)
V3)1116.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.15 × 0.05
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.779, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
7896, 1228, 925
Rint0.067
θmax (°)21.3
(sin θ/λ)max1)0.511
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.108, 1.06
No. of reflections1228
No. of parameters169
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: APEX2 (Bruker 2006), APEX2 and SAINT (Bruker 2006), SAINT (Bruker 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O1i0.85 (3)2.08 (3)2.887 (3)158 (2)
C6—H6···F1'ii0.952.603.219 (11)123.1
C12—H12···O1iii0.952.633.434 (3)142.7
C12—H12···F1'iii0.952.403.287 (11)154.4
C14—H14C···Cg1i0.982.983.702 (3)131
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y+3, z.
 

Acknowledgements

We thank the University of Otago for purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChopra, D. & Guru Row, T. N. (2008). CrystEngComm, 10, 54–67.  Web of Science CSD CrossRef CAS Google Scholar
First citationDonnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335–o340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHou, Z.-K., Ao, C.-C., Song, J. & Chen, L.-G. (2004). Acta Cryst. E60, o1957–o1958.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o2187.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds