organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[4-(Prop-2-yn­yl­oxy)phen­yl]male­imide

aDepartment of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: qzshi@zzu.edu.cn

(Received 24 October 2008; accepted 1 November 2008; online 10 December 2008)

In the title compound, C13H9NO3, the dihedral angle between the benzene and maleimide rings is 64.1 (2)°. In the crystal structure, mol­ecules interact via C—H⋯O inter­actions.

Related literature

N-substituted maleimides can be used in free-radical-initiated polymerization processes upon exposure to light, see: Chang et al. (1999[Chang, J. Y., Kim, T. J., Han, M. J. & Chae, K. H. (1999). Polymer, 40, 4049-4054.]); Hoyle et al. (1999[Hoyle, C. E., Viswanathan, K., Clark, S. C., Miller, C. W., Nguyen, C., Jonsson, S. & Shao, L. (1999). Macromolecules, 32, 2793-2795.]). For related structures, see: Moreno-Fuquen et al. (2006[Moreno-Fuquen, R., Valencia, H., Pardo, Z. D., D'Vries, R. & Kennedy, A. R. (2006). Acta Cryst. E62, o2734-o2735.], 2008a[Moreno-Fuquen, R., Pardo-Botero, Z. & Ellena, J. (2008a). Acta Cryst. E64, o932.],b[Moreno-Fuquen, R., Pardo-Botero, Z. & Ellena, J. (2008b). Acta Cryst. E64, o1991.]). For the effect of benzene ring substituents on the dihedral angle between the benzene and imidic rings, see: Miller et al. (2000[Miller, C. W., Hoyle, C. E., Valente, E. J., Zobkowski, J. D. & Jönsson, E. S. (2000). J. Chem. Crystallogr. 30, 563-571.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9NO3

  • Mr = 227.21

  • Monoclinic, P 21 /n

  • a = 9.0428 (18) Å

  • b = 11.491 (2) Å

  • c = 11.492 (2) Å

  • β = 102.00 (3)°

  • V = 1168.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 292 (3) K

  • 0.30 × 0.26 × 0.20 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.981

  • 6107 measured reflections

  • 2053 independent reflections

  • 1368 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.224

  • S = 1.35

  • 2053 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.93 2.50 3.179 (12) 130
C9—H9⋯O2ii 0.93 2.18 3.103 (10) 169
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-substituted maleimides can be used in free radical initiated polymerization process upon exposure to light (Chang, et al., 1999; Hoyle, et al.,1999). N-(3-Nitrophenyl)maleimide (Moreno-Fuquen, et al., 2006), N-(3-Chlorophenyl)maleimide (Moreno-Fuquen, et al., 2008a) and N-(4-Chlorophenyl)maleimide (Moreno-Fuquen, et al., 2008b) has reported and could be taken as a reference to compare with the structural characteristics of (I).

Perspective view of (I), showing the atomic numbering scheme, can be seen in Fig. 1. The dihedral angle between the benzene and imidic rings influences on the polymerization process, and subsituents of the benzene ring can effect the value of dihedral angle (Miller et al. 2000). In the title compound (I), the dihedral angle between the benzene and maleimide is 64.1 (2)°. This angle is 46.46 (5) ° for N-(3-Chlorophenyl)maleimide (Moreno-Fuquen, et al., 2008:1) and 47.54 (9) ° for N-(4-Chlorophenyl)maleimide (Moreno-Fuquen, et al., 2008:2). The crystal structure of (I) is stabilized by weak intermolecular C—H···O hydrogen bonds.

Related literature top

N-substituted maleimides can be used in free-radical-initiated polymerization processes upon exposure to light, see: Chang et al. (1999); Hoyle et al. (1999). For related structures, see: Moreno-Fuquen et al. (2006, 2008a,b). For the effect of benzene ring substituents on the dihedral angle between the benzene and imidic rings, see: Miller et al. (2000);

Experimental top

The title compound was prepared by taking equimolar quantities of 4-(prop-2-ynyloxy)benzenamine (14.7 g, 0.1 mol) and maleic anhydride (9.8 g, 0.1 mol) in 80 ml benzene and 20 ml DMF and refluxing 4 h in the presence of p-toluenesulfonic acid. The reaction product was poured into 500 ml ice water, yellow precipitate product was formed. The crude product was recrystalled from ethanol. Yield 90%. 1H NMR (300 MHz, DMSO-d6) δ 7.30, 7.13(d, aromatic), 7.02(s, 2H, maleimide), 4.85(s, 2H, –H2–), 3.14(s, 1H, -H). Analysis. calculated for C13H9NO3: C 68.72, H 3.99, N 6.16%. Found: C 68.39, H 4.02, N 6.21%. The product added in 50 ml ethanol and crystals of (I) suitable for X-ray analysis were obtained by slow evaporation at room temperature.

Refinement top

The H atoms bound to C atoms were placed in caculated positions with C—H = 0.93 Å and included in the refinement with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of complex (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
N-[4-(Prop-2-ynyloxy)phenyl]maleimide top
Crystal data top
C13H9NO3F(000) = 472
Mr = 227.21Dx = 1.292 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2053 reflections
a = 9.0428 (18) Åθ = 2.5–25.0°
b = 11.491 (2) ŵ = 0.09 mm1
c = 11.492 (2) ÅT = 292 K
β = 102.00 (3)°Block, yellow
V = 1168.0 (4) Å30.30 × 0.26 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2053 independent reflections
Radiation source: fine-focus sealed tube1368 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.968, Tmax = 0.981k = 1310
6107 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.224H-atom parameters constrained
S = 1.35 w = 1/[σ2(Fo2) + (0.0733P)2 + 3.1182P]
where P = (Fo2 + 2Fc2)/3
2053 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C13H9NO3V = 1168.0 (4) Å3
Mr = 227.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0428 (18) ŵ = 0.09 mm1
b = 11.491 (2) ÅT = 292 K
c = 11.492 (2) Å0.30 × 0.26 × 0.20 mm
β = 102.00 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2053 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1368 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.981Rint = 0.088
6107 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.224H-atom parameters constrained
S = 1.35Δρmax = 0.49 e Å3
2053 reflectionsΔρmin = 0.43 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.2361 (11)0.5326 (8)0.6724 (8)0.088 (4)
H30.20390.53940.59040.106*
O30.0885 (6)0.1202 (5)1.2278 (5)0.0694 (19)
C50.1785 (7)0.3652 (6)0.9539 (6)0.052 (2)
O10.3695 (7)0.5806 (5)0.9313 (5)0.083 (2)
O20.0834 (8)0.3616 (6)0.7229 (6)0.094 (3)
C80.1352 (8)0.1986 (7)1.1335 (6)0.048 (2)
C90.2725 (8)0.2328 (7)1.0900 (6)0.054 (2)
H90.35860.19601.13230.065*
C100.3076 (7)0.3112 (7)0.9958 (6)0.053 (2)
H100.39920.32000.97200.064*
C70.0089 (9)0.2487 (8)1.0914 (8)0.066 (3)
H70.08340.23631.11290.079*
C60.0429 (7)0.3326 (7)0.9989 (7)0.059 (2)
H60.04240.37360.96130.071*
C10.3150 (9)0.5431 (8)0.8502 (7)0.062 (3)
C40.1745 (10)0.4410 (7)0.7421 (7)0.070 (3)
C110.2080 (11)0.0481 (9)1.2619 (8)0.077 (3)
H11A0.18620.00161.32680.093*
H11B0.29350.09711.29580.093*
C20.3280 (11)0.5958 (8)0.7276 (8)0.078 (3)
H20.38660.65530.70590.094*
C120.2667 (12)0.0409 (10)1.1735 (10)0.081 (3)
C130.3170 (15)0.1138 (12)1.1030 (12)0.113 (5)
H130.35260.16561.05300.136*
N10.2168 (7)0.4475 (6)0.8557 (5)0.0543 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.115 (8)0.070 (6)0.055 (6)0.005 (6)0.038 (6)0.016 (5)
O30.068 (4)0.078 (4)0.052 (3)0.000 (3)0.010 (3)0.011 (3)
C50.053 (4)0.053 (5)0.038 (4)0.006 (4)0.017 (4)0.001 (4)
O10.093 (5)0.077 (4)0.058 (4)0.021 (4)0.038 (4)0.001 (3)
O20.107 (5)0.068 (4)0.074 (4)0.006 (4)0.056 (4)0.003 (3)
C80.064 (5)0.049 (5)0.026 (4)0.009 (4)0.003 (4)0.009 (3)
C90.059 (5)0.054 (5)0.039 (4)0.021 (4)0.010 (4)0.016 (4)
C100.039 (4)0.068 (5)0.045 (5)0.006 (4)0.007 (4)0.009 (4)
C70.045 (5)0.075 (6)0.069 (6)0.013 (4)0.006 (4)0.001 (5)
C60.057 (5)0.051 (5)0.058 (5)0.002 (4)0.014 (4)0.007 (4)
C10.057 (5)0.069 (6)0.047 (5)0.002 (4)0.018 (4)0.003 (5)
C40.082 (6)0.052 (5)0.054 (5)0.013 (5)0.034 (5)0.002 (4)
C110.082 (6)0.096 (8)0.042 (5)0.010 (6)0.012 (5)0.036 (5)
C20.088 (7)0.058 (6)0.072 (6)0.011 (5)0.020 (5)0.016 (5)
C120.085 (7)0.083 (8)0.068 (7)0.019 (6)0.000 (6)0.028 (6)
C130.134 (11)0.098 (9)0.092 (9)0.023 (9)0.014 (8)0.019 (8)
N10.051 (4)0.064 (4)0.036 (4)0.004 (3)0.018 (3)0.000 (3)
Geometric parameters (Å, º) top
C3—C21.184 (11)C10—H100.9300
C3—C41.498 (9)C7—C61.513 (11)
C3—H30.9300C7—H70.9300
O3—C111.353 (10)C6—H60.9300
O3—C81.535 (9)C1—N11.422 (11)
C5—C101.321 (7)C1—C21.560 (12)
C5—C61.475 (8)C4—N11.284 (10)
C5—N11.565 (10)C11—C121.608 (16)
O1—C11.052 (9)C11—H11A0.9700
O2—C41.218 (10)C11—H11B0.9700
C8—C71.281 (10)C2—H20.9300
C8—C91.484 (8)C12—C131.311 (16)
C9—C101.493 (10)C13—H130.9300
C9—H90.9300
C2—C3—C4116.3 (8)C7—C6—H6112.3
C2—C3—H3121.9O1—C1—N1117.3 (9)
C4—C3—H3121.9O1—C1—C2122.1 (9)
C11—O3—C8104.1 (6)N1—C1—C2120.4 (7)
C10—C5—C6119.3 (7)O2—C4—N1106.0 (8)
C10—C5—N1103.6 (6)O2—C4—C3137.9 (8)
C6—C5—N1136.9 (6)N1—C4—C3115.9 (8)
C7—C8—C9119.8 (7)O3—C11—C12123.7 (7)
C7—C8—O3100.1 (7)O3—C11—H11A106.4
C9—C8—O3139.9 (6)C12—C11—H11A106.4
C8—C9—C10136.3 (6)O3—C11—H11B106.4
C8—C9—H9111.9C12—C11—H11B106.4
C10—C9—H9111.9H11A—C11—H11B106.5
C5—C10—C9104.1 (6)C3—C2—C193.9 (8)
C5—C10—H10128.0C3—C2—H2133.0
C9—C10—H10128.0C1—C2—H2133.0
C8—C7—C6104.9 (7)C13—C12—C11178.9 (10)
C8—C7—H7127.6C12—C13—H13180.0
C6—C7—H7127.6C4—N1—C193.2 (7)
C5—C6—C7135.5 (6)C4—N1—C5129.4 (7)
C5—C6—H6112.3C1—N1—C5137.1 (5)
C11—O3—C8—C7169.0 (7)C4—C3—C2—C14.4 (12)
C11—O3—C8—C916.0 (12)O1—C1—C2—C3172.0 (11)
C7—C8—C9—C105.8 (14)N1—C1—C2—C32.3 (12)
O3—C8—C9—C10179.9 (8)O2—C4—N1—C1179.3 (7)
C6—C5—C10—C94.1 (9)C3—C4—N1—C13.7 (9)
N1—C5—C10—C9179.7 (5)O2—C4—N1—C56.4 (12)
C8—C9—C10—C56.6 (12)C3—C4—N1—C5178.0 (7)
C9—C8—C7—C61.8 (10)O1—C1—N1—C4175.7 (9)
O3—C8—C7—C6178.1 (6)C2—C1—N1—C41.2 (10)
C10—C5—C6—C72.5 (14)O1—C1—N1—C510.7 (15)
N1—C5—C6—C7177.1 (8)C2—C1—N1—C5174.7 (8)
C8—C7—C6—C50.8 (13)C10—C5—N1—C4109.2 (9)
C2—C3—C4—O2179.8 (12)C6—C5—N1—C465.9 (13)
C2—C3—C4—N16.5 (14)C10—C5—N1—C162.5 (11)
C8—O3—C11—C1261.5 (10)C6—C5—N1—C1122.4 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.503.179 (12)130
C9—H9···O2ii0.932.183.103 (10)169
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H9NO3
Mr227.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)9.0428 (18), 11.491 (2), 11.492 (2)
β (°) 102.00 (3)
V3)1168.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.26 × 0.20
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.968, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
6107, 2053, 1368
Rint0.088
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.224, 1.35
No. of reflections2053
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.43

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
C1—N11.422 (11)C11—C121.608 (16)
C4—N11.284 (10)C12—C131.311 (16)
C13—C12—C11178.9 (10)C12—C13—H13180.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.503.179 (12)130
C9—H9···O2ii0.932.183.103 (10)169
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 50873093).

References

First citationBruker (2000). SMART, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, J. Y., Kim, T. J., Han, M. J. & Chae, K. H. (1999). Polymer, 40, 4049–4054.  CAS Google Scholar
First citationHoyle, C. E., Viswanathan, K., Clark, S. C., Miller, C. W., Nguyen, C., Jonsson, S. & Shao, L. (1999). Macromolecules, 32, 2793–2795.  Web of Science CrossRef CAS Google Scholar
First citationMiller, C. W., Hoyle, C. E., Valente, E. J., Zobkowski, J. D. & Jönsson, E. S. (2000). J. Chem. Crystallogr. 30, 563–571.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoreno-Fuquen, R., Pardo-Botero, Z. & Ellena, J. (2008a). Acta Cryst. E64, o932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Pardo-Botero, Z. & Ellena, J. (2008b). Acta Cryst. E64, o1991.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Valencia, H., Pardo, Z. D., D'Vries, R. & Kennedy, A. R. (2006). Acta Cryst. E62, o2734–o2735.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds