organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Bromo­adamantane

aLudwig-Maximilians Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13 (Haus D), 81377 München, Germany
*Correspondence e-mail: kluef@cup.uni-muenchen.de

(Received 7 November 2008; accepted 18 November 2008; online 13 December 2008)

The mol­ecule of the title compound, C10H15Br, shows noncrystallographic mirror symmetry. In the crystal structure, no inter­molecular inter­actions with distances less than the sum of the van der Waals radii of the respective atoms are present.

Related literature

For the crystal structure of the thio­urea solvate of the compound, see Chao et al. (2003[Chao, M.-H., Kariuki, B. M., Harris, K. D. M., Collins, S. P. & Laundy, D. (2003). Angew. Chem. Int. Ed. 42, 2982-2985.]).

[Scheme 1]

Experimental

Crystal data
  • C10H15Br

  • Mr = 215.13

  • Monoclinic, P 21 /c

  • a = 10.154 (3) Å

  • b = 6.8541 (11) Å

  • c = 13.240 (3) Å

  • β = 90.027 (17)°

  • V = 921.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.40 mm−1

  • T = 200 (2) K

  • 0.21 × 0.16 × 0.13 mm

Data collection
  • Oxford Xcalibur diffractometer

  • Absorption correction: analytical (de Meulenaer & Tompa, 1965[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.]) Tmin = 0.462, Tmax = 0.614

  • 4563 measured reflections

  • 1629 independent reflections

  • 1313 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.080

  • S = 1.02

  • 1629 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure of the title compound was elucidated for comparison of the influence of different substituents on the geometry of the adamantane framework.

In the molecule the Br atom is bonded to one of the bridgehead positions of the carbocycle (Fig. 1). Bond lengths are normal.

In the crystal structure, only dispersive interactions are present. No intermolecular contacts whose range falls below the sum of the van der Waals radii of the respective atoms are existent.

A similar structure, the thiourea solvate of the compound, has been described by Chao et al. (2003) but showed disorder among the 1-bromoadamantane moiety. However, a comparison of both molecules shows good agreement in terms of bond lengths and angles.

The packing of the compound is shown in Fig. 2.

Related literature top

The compound was obtained commercially (ACROS). For the crystal structure of the thiourea solvate of the compound, see Chao et al. (2003).

Experimental top

The compound was obtained commercially (ACROS). Crystals suitable for X-ray analysis were obtained upon free evaporation of a solution of the compound in diethyl ether.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.99 Å for methylene groups and C—H 1.00 Å for bridgehead positions) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

The crystal measured is refined as a twin with a twin-plane perpendicular to [001] (Ebenenzwilling). The volume-to-volume-ratio for the two individuals is found at approximately 1:1 with a batch-scale factor of approximately 0.46.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound, viewed along [010].
1-Bromoadamantane top
Crystal data top
C10H15BrF(000) = 440
Mr = 215.13Dx = 1.551 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2345 reflections
a = 10.154 (3) Åθ = 3.9–26.3°
b = 6.8541 (11) ŵ = 4.40 mm1
c = 13.240 (3) ÅT = 200 K
β = 90.027 (17)°Block, colourless
V = 921.5 (4) Å30.21 × 0.16 × 0.13 mm
Z = 4
Data collection top
Oxford Xcalibur
diffractometer
1629 independent reflections
Radiation source: fine-focus sealed tube1313 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 25.3°, θmin = 3.9°
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
h = 1211
Tmin = 0.462, Tmax = 0.614k = 88
4563 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0393P)2]
where P = (Fo2 + 2Fc2)/3
1629 reflections(Δ/σ)max < 0.001
101 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C10H15BrV = 921.5 (4) Å3
Mr = 215.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.154 (3) ŵ = 4.40 mm1
b = 6.8541 (11) ÅT = 200 K
c = 13.240 (3) Å0.21 × 0.16 × 0.13 mm
β = 90.027 (17)°
Data collection top
Oxford Xcalibur
diffractometer
1629 independent reflections
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
1313 reflections with I > 2σ(I)
Tmin = 0.462, Tmax = 0.614Rint = 0.054
4563 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.02Δρmax = 0.77 e Å3
1629 reflectionsΔρmin = 0.38 e Å3
101 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.23244 (6)0.64478 (6)0.19046 (4)0.04391 (18)
C10.2412 (4)0.4548 (6)0.3057 (3)0.0281 (9)
C20.3872 (4)0.4075 (6)0.3225 (4)0.0361 (11)
H210.43690.52790.33860.043*
H220.42550.34810.26100.043*
C30.1789 (4)0.5508 (7)0.3973 (3)0.0315 (11)
H310.08590.58400.38290.038*
H320.22660.67240.41440.038*
C40.1651 (5)0.2707 (7)0.2754 (3)0.0330 (11)
H410.20420.21200.21400.040*
H420.07190.30310.26120.040*
C50.1743 (6)0.1266 (7)0.3651 (4)0.0356 (14)
H50.12510.00480.34770.043*
C60.3174 (6)0.0759 (8)0.3849 (5)0.0418 (15)
H610.35630.01470.32410.050*
H620.32330.01850.44130.050*
C70.3940 (4)0.2628 (8)0.4118 (4)0.0372 (13)
H70.48800.22940.42610.045*
C80.3321 (6)0.3549 (7)0.5051 (4)0.0345 (14)
H810.38070.47520.52290.041*
H820.33900.26330.56270.041*
C90.1869 (6)0.4047 (7)0.4865 (4)0.0317 (13)
H90.14800.46480.54860.038*
C100.1118 (5)0.2199 (8)0.4592 (4)0.0369 (13)
H1010.01840.25190.44540.044*
H1020.11490.12680.51630.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0506 (3)0.0472 (3)0.0339 (2)0.0028 (3)0.0007 (3)0.0092 (2)
C10.030 (2)0.0264 (19)0.0282 (19)0.0018 (18)0.003 (4)0.0013 (18)
C20.027 (2)0.040 (3)0.042 (3)0.006 (2)0.007 (2)0.002 (2)
C30.031 (3)0.026 (2)0.037 (3)0.000 (2)0.001 (2)0.005 (2)
C40.029 (2)0.037 (3)0.033 (2)0.008 (2)0.001 (2)0.009 (2)
C50.042 (3)0.023 (3)0.042 (3)0.010 (2)0.000 (3)0.003 (2)
C60.050 (4)0.029 (3)0.046 (3)0.001 (3)0.006 (3)0.002 (3)
C70.024 (2)0.040 (3)0.048 (4)0.006 (3)0.005 (2)0.002 (3)
C80.035 (3)0.036 (3)0.033 (3)0.012 (3)0.009 (2)0.002 (2)
C90.036 (3)0.031 (3)0.029 (3)0.007 (2)0.003 (2)0.003 (2)
C100.033 (3)0.035 (3)0.043 (3)0.008 (2)0.004 (3)0.001 (2)
Geometric parameters (Å, º) top
Br1—C12.008 (4)C5—C101.538 (8)
C1—C31.518 (6)C5—H51.0000
C1—C41.533 (6)C6—C71.540 (8)
C1—C21.533 (6)C6—H610.9900
C2—C71.545 (7)C6—H620.9900
C2—H210.9900C7—C81.523 (8)
C2—H220.9900C7—H71.0000
C3—C91.551 (6)C8—C91.533 (7)
C3—H310.9900C8—H810.9900
C3—H320.9900C8—H820.9900
C4—C51.547 (7)C9—C101.522 (7)
C4—H410.9900C9—H91.0000
C4—H420.9900C10—H1010.9900
C5—C61.517 (8)C10—H1020.9900
C3—C1—C4110.8 (4)C5—C6—C7109.4 (5)
C3—C1—C2112.3 (4)C5—C6—H61109.8
C4—C1—C2110.6 (4)C7—C6—H61109.8
C3—C1—Br1107.9 (3)C5—C6—H62109.8
C4—C1—Br1108.2 (3)C7—C6—H62109.8
C2—C1—Br1106.9 (3)H61—C6—H62108.2
C1—C2—C7106.8 (4)C8—C7—C6108.9 (4)
C1—C2—H21110.4C8—C7—C2109.6 (4)
C7—C2—H21110.4C6—C7—C2109.6 (4)
C1—C2—H22110.4C8—C7—H7109.6
C7—C2—H22110.4C6—C7—H7109.6
H21—C2—H22108.6C2—C7—H7109.6
C1—C3—C9107.9 (4)C7—C8—C9111.1 (5)
C1—C3—H31110.1C7—C8—H81109.4
C9—C3—H31110.1C9—C8—H81109.4
C1—C3—H32110.1C7—C8—H82109.4
C9—C3—H32110.1C9—C8—H82109.4
H31—C3—H32108.4H81—C8—H82108.0
C1—C4—C5107.1 (4)C10—C9—C8109.5 (5)
C1—C4—H41110.3C10—C9—C3109.3 (4)
C5—C4—H41110.3C8—C9—C3108.4 (4)
C1—C4—H42110.3C10—C9—H9109.9
C5—C4—H42110.3C8—C9—H9109.9
H41—C4—H42108.5C3—C9—H9109.9
C6—C5—C10110.5 (5)C9—C10—C5109.4 (4)
C6—C5—C4109.7 (5)C9—C10—H101109.8
C10—C5—C4109.4 (4)C5—C10—H101109.8
C6—C5—H5109.1C9—C10—H102109.8
C10—C5—H5109.1C5—C10—H102109.8
C4—C5—H5109.1H101—C10—H102108.2
C3—C1—C2—C761.4 (5)C5—C6—C7—C260.8 (6)
C4—C1—C2—C762.9 (5)C1—C2—C7—C858.8 (5)
Br1—C1—C2—C7179.5 (3)C1—C2—C7—C660.6 (5)
C4—C1—C3—C962.2 (5)C6—C7—C8—C959.1 (6)
C2—C1—C3—C962.0 (5)C2—C7—C8—C960.7 (5)
Br1—C1—C3—C9179.5 (3)C7—C8—C9—C1059.1 (5)
C3—C1—C4—C562.2 (5)C7—C8—C9—C360.0 (5)
C2—C1—C4—C562.9 (5)C1—C3—C9—C1060.4 (5)
Br1—C1—C4—C5179.6 (3)C1—C3—C9—C858.9 (5)
C1—C4—C5—C660.9 (6)C8—C9—C10—C558.0 (6)
C1—C4—C5—C1060.5 (5)C3—C9—C10—C560.6 (5)
C10—C5—C6—C760.0 (6)C6—C5—C10—C959.7 (6)
C4—C5—C6—C760.7 (6)C4—C5—C10—C961.2 (5)
C5—C6—C7—C859.1 (6)

Experimental details

Crystal data
Chemical formulaC10H15Br
Mr215.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)10.154 (3), 6.8541 (11), 13.240 (3)
β (°) 90.027 (17)
V3)921.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.40
Crystal size (mm)0.21 × 0.16 × 0.13
Data collection
DiffractometerOxford Xcalibur
diffractometer
Absorption correctionAnalytical
(de Meulenaer & Tompa, 1965)
Tmin, Tmax0.462, 0.614
No. of measured, independent and
observed [I > 2σ(I)] reflections
4563, 1629, 1313
Rint0.054
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.080, 1.02
No. of reflections1629
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.38

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

Professor Dr Klapötke is thanked for generous allocation of measurement time on the diffractometer.

References

First citationChao, M.-H., Kariuki, B. M., Harris, K. D. M., Collins, S. P. & Laundy, D. (2003). Angew. Chem. Int. Ed. 42, 2982–2985.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMeulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds