organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o81-o82

4-Chloro-N-[N-(6-methyl-2-pyrid­yl)car­bamo­thio­yl]benzamide

aDepartment of Chemistry, Faculty of Arts and Science, Mersin University, 33343 Mersin, Turkey, bDepartment of Chemistry, University of Paderborn, 33098 Paderborn, Germany, cDepartment of Natural Sciences, Fayetteville State University, Fayetteville, NC, 28301, USA, and dDepartment of Chemistry, Faculty of Pharmacy, Mersin University, 33169 Mersin, Turkey
*Correspondence e-mail: hakan.arslan.acad@gmail.com

(Received 10 November 2008; accepted 5 December 2008; online 10 December 2008)

In the title compound, C14H12ClN3OS, the short exocyclic N—C bond lengths indicate resonance in the thiourea part of the mol­ecule. The title compound is stabilized by an intra­molecular N—H⋯N hydrogen bond, which results in the formation of a six-membered ring. In addition, it shows a synperiplanar conformation between the thio­carbonyl group and the pyridine group. Inter­molecular N—H⋯S and C—H⋯O inter­actions are also present.

Related literature

For the synthesis, see: Mansuroğlu et al. (2008[Mansuroğlu, D. S., Arslan, H., Flörke, U. & Külcü, N. (2008). J. Coord. Chem. 61, 3134-3146.]); Arslan et al. (2003a[Arslan, H., Flörke, U. & Külcü, N. (2003a). J. Chem. Crystallogr. 33, 919-924.],b[Arslan, H., Külcü, N. & Flörke, U. (2003b). Transition Met. Chem. 28, 816-819.]); Binzet et al. (2006[Binzet, G., Arslan, H., Flörke, U., Külcü, N. & Duran, N. (2006). J. Coord. Chem. 59, 1395-1406.]). For general background, see: Arslan et al. (2006a[Arslan, H., Flörke, U., Külcü, N. & Emen, M. F. (2006a). J. Coord. Chem. 59, 223-228.],b[Arslan, H., Külcü, N. & Flörke, U. (2006b). Spectrochim. Acta A, 64, 1065-1071.], 2007[Arslan, H., Flörke, U. & Külcü, N. (2007). Spectrochim. Acta A, 67, 936-943.]); Kemp et al. (1997[Kemp, G., Roodt, A., Purcell, W. & Koch, K. R. (1997). J. Chem. Soc. Dalton Trans. 23, 4481-4483.]); Koch et al. (1995[Koch, K. R., Sacht, C., Grimmbacher, T. & Bourne, S. (1995). S. Afr. J. Chem. 48, 71-77.]); Nencki (1873[Nencki, M. (1873). Ber. Dtsch. Chem. Ges. 6, 598-600.]); Özpozan et al. (2000[Özpozan, N., Arslan, H., Ozpozan, T., Ozdes, N. & Külcü, N. (2000). Thermochim. Acta, 343, 127-133.]). For related compounds, see: Arslan et al. (2003a[Arslan, H., Flörke, U. & Külcü, N. (2003a). J. Chem. Crystallogr. 33, 919-924.], 2006b[Arslan, H., Külcü, N. & Flörke, U. (2006b). Spectrochim. Acta A, 64, 1065-1071.], 2007[Arslan, H., Flörke, U. & Külcü, N. (2007). Spectrochim. Acta A, 67, 936-943.]); Dong et al. (2008[Dong, W.-K., Yan, H.-B., Chai, L.-Q., Lv, Z.-W. & Zhao, C.-Y. (2008). Acta Cryst. E64, o1097.]); Duque et al. (2008[Duque, J., Estevez-Hernandez, O., Reguera, E., Corrêa, R. S. & Gutierrez Maria, P. (2008). Acta Cryst. E64, o1068.]); Tutughamiarso & Bolte (2007[Tutughamiarso, M. & Bolte, M. (2007). Acta Cryst. E63, o4682.]); Yue et al. (2008[Yue, H., Wang, Y., Xia, A., Luo, S. & Xu, D. (2008). Acta Cryst. E64, o858.]); Yusof et al. (2008a[Yusof, M. S. M., Ayob, N. A. C., Kadir, M. A. & Yamin, B. M. (2008a). Acta Cryst. E64, o937.],b[Yusof, M. S. M., Muharam, S. H., Kassim, M. B. & Yamin, B. M. (2008b). Acta Cryst. E64, o1137.]); Xian (2008[Xian, L. (2008). Acta Cryst. E64, o1969.]); Thiam et al. (2008[Thiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776.]); Binzet et al. (2006[Binzet, G., Arslan, H., Flörke, U., Külcü, N. & Duran, N. (2006). J. Coord. Chem. 59, 1395-1406.]); Uğur et al. (2006[Uğur, D., Arslan, H. & Külcü, N. (2006). Russ. J. Coord. Chem. 32, 669-675.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClN3OS

  • Mr = 305.78

  • Triclinic, [P \overline 1]

  • a = 8.255 (3) Å

  • b = 9.030 (3) Å

  • c = 9.957 (3) Å

  • α = 80.810 (7)°

  • β = 66.552 (7)°

  • γ = 87.269 (7)°

  • V = 672.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 120 (2) K

  • 0.20 × 0.14 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.918, Tmax = 0.958

  • 3651 measured reflections

  • 2609 independent reflections

  • 1492 reflections with I > 2σ(I)

  • Rint = 0.100

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.266

  • S = 0.98

  • 2609 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O1i 0.95 2.42 3.303 (7) 154
N2—H2B⋯S1ii 0.88 2.61 3.464 (5) 165
N1—H1B⋯N3 0.88 1.90 2.651 (7) 142
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiourea derivatives, first synthesized by Nencki, 1873, are very flexible ligands and able to coordinate to a range of metal centers as neutral ligands, monoanions or dianions (Mansuroğlu et al., 2008; Arslan et al., 2003b, 2006a; Binzet et al., 2006; Kemp et al., 1997; Koch et al., 1995). In addition, the oxygen, nitrogen and sulfur donors provide a multitude of bonding possibilities. The coordination chemistry of substituted thioureas has led to some interesting practical applications such as liquid–liquid extraction, pre-concentration and highly efficient chromatographic separation (Kemp et al., 1997; Koch et al., 1995).

Our team focused on the synthesis, characterization, crystal structure, thermal behavior and antimicrobial activity of new thiourea derivatives (Mansuroğlu et al., 2008; Arslan et al., 2003a, 2003b, 2006a, 2006b, 2007; Uğur et al., 2006; Özpozan et al., 2000). In this article, we report the preparation and characterization of a novel thiourea compound, 4-chloro-N-(6-methylpyridin-2-yl-carbamothioyl)benzamide (I), and its crystal structure. The title compound was purified by re-crystallization from ethanol:dichloromethane mixture (1:2) and characterized by elemental analysis. The analytical data is consistent with the proposed structure given in Scheme 1.

The molecular structure and packing diagram are depicted in Figure 1 and 2, respectively. The bond lengths and angles in the thiourea moiety are typical for thiourea derivatives; the C8—S1 and C7—O1 bonds both show a typical double-bond character with 1.655 (5) and 1.203 (6) Å, respectively. The short bond lengths of the N1—C7, 1.395 (7); N1—C8, 1.376 (6) and N2—C8, 1.364 (6) Å bonds indicate partial double bond character. These results can be explained by the existence of resonance in this part of the molecule. The other C—N bond length is within the expected range.

A lot of substitute benzoylthiourea derivatives have cis-trans configurations (Yusof, et al., 2008a, 2008b; Thiam, et al., 2008; Xian, 2008; Dong, et al., 2008; Duque, et al., 2008). However, the title compound shows an intramolecular N—H···N hydrogen bond (Table 1) which results in the formation of a six membered ring (N3—C9—N2—C8—N1—H1) and leads to a syn-periplanar conformation between the thiocarbonyl group carbon atom and the pyridine group nitrogen atom (Tutughamiarso & Bolte, 2007; Yue et al., 2008). The torsion angles in this region, C8—N2—C9—N3, 14.9 (9)° and C9—N2—C8—N1, -7.2 (8)° confirm this conformation. This formation forces the two amide hydrogen atoms to the opposite direction.

The carbonyl and thiocarbonyl part is essentially planar, as reflected by the torsional angles O1—C7—N1—C8, C7—N1—C8—S1 and C7—N1—C8—N2 of 1.7 (9), 0.3 (8) and 179.3 (5) °, respectively. O1, C7, N1, C8 and S1 fragment is also planar (maximum and mean deviations are 0.010 and 0.005 Å, respectively).

The crystal packing is shown in Fig. 2. There are two intermolecular, N—H···S and C—H···O, hydrogen bonds which connect molecules in chains parallel to [100].

Related literature top

For the synthesis, see: Mansuroğlu et al. (2008); Arslan et al. (2003a,b); Binzet et al. (2006). For general background, see: Arslan et al. (2006a,b, 2007); Kemp et al. (1997); Koch et al. (1995); Nencki (1873); Özpozan et al. (2000). For related compounds, see: Arslan et al. (2003a, 2006b, 2007); Dong et al. (2008); Duque et al. (2008); Tutughamiarso & Bolte (2007); Yue et al. (2008); Yusof et al. (2008a,b); Xian (2008); Thiam et al. (2008); Binzet et al. (2006); Uğur et al. (2006).

Experimental top

The compound was prepared with a procedure similar to that reported in the literature (Arslan et al., 2003b, 2006a). A solution of 4-chloro-benzoyl chloride (0.01 mol) in acetone (50 cm3) was added dropwise to a suspension of potassium thiocyanate (0.01 mol) in acetone (30 cm3). The reaction mixture was heated under reflux for 30 min, and then cooled to room temperature. A solution of 6-methylpyridin-2-amine (0.01 mol) in acetone (10 cm3) was added and the resulting mixture was stirred for 2 h. Hydrochloric acid (0.1 N, 300 cm3) was added to the solution, which was then filtered. The solid product was washed with water and purifed by recrystalization from an ethanol:dichloromethane mixture (1:2). Anal. Calcd. for C14H12ClN3OS: C, 55.0; H, 4.0; N, 13.7. Found: C, 55.1; H, 3.9; N, 13.7%.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram for (I) viewed along a-direction. Hydrogen bonds shown as dotted lines.
4-Chloro-N-[N-(6-methyl-2-pyridyl)carbamothioyl]benzamide top
Crystal data top
C14H12ClN3OSZ = 2
Mr = 305.78F(000) = 316
Triclinic, P1Dx = 1.511 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.255 (3) ÅCell parameters from 716 reflections
b = 9.030 (3) Åθ = 2.3–26.3°
c = 9.957 (3) ŵ = 0.44 mm1
α = 80.810 (7)°T = 120 K
β = 66.552 (7)°Prism, yellow
γ = 87.269 (7)°0.20 × 0.14 × 0.10 mm
V = 672.1 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2609 independent reflections
Radiation source: sealed tube1492 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
ϕ and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1010
Tmin = 0.918, Tmax = 0.958k = 115
3651 measured reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.266H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.1601P)2]
where P = (Fo2 + 2Fc2)/3
2609 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C14H12ClN3OSγ = 87.269 (7)°
Mr = 305.78V = 672.1 (4) Å3
Triclinic, P1Z = 2
a = 8.255 (3) ÅMo Kα radiation
b = 9.030 (3) ŵ = 0.44 mm1
c = 9.957 (3) ÅT = 120 K
α = 80.810 (7)°0.20 × 0.14 × 0.10 mm
β = 66.552 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2609 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1492 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.958Rint = 0.100
3651 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0770 restraints
wR(F2) = 0.266H-atom parameters constrained
S = 0.98Δρmax = 0.81 e Å3
2609 reflectionsΔρmin = 0.50 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.0760 (2)0.08311 (16)0.24521 (19)0.0469 (5)
S10.4068 (2)0.83271 (15)0.20068 (15)0.0316 (5)
O10.2334 (6)0.5331 (4)0.3623 (4)0.0370 (10)
N10.2869 (6)0.6040 (5)0.1158 (5)0.0296 (11)
H1B0.27300.57250.04180.036*
N20.4090 (6)0.8104 (5)0.0583 (5)0.0282 (11)
H2B0.44620.90400.07600.034*
N30.3162 (6)0.6306 (5)0.1620 (5)0.0253 (10)
C10.0432 (8)0.2777 (6)0.3757 (6)0.0347 (14)
H1A0.01830.31410.46620.042*
C20.0314 (8)0.1427 (6)0.3760 (7)0.0394 (15)
H2A0.11220.08880.46610.047*
C30.0122 (8)0.0878 (6)0.2450 (6)0.0322 (13)
C40.1259 (8)0.1664 (6)0.1110 (6)0.0365 (15)
H4A0.15370.12800.02110.044*
C50.1987 (7)0.3030 (6)0.1107 (6)0.0264 (12)
H5A0.27830.35720.02010.032*
C60.1558 (7)0.3597 (5)0.2407 (6)0.0258 (12)
C70.2278 (7)0.5061 (6)0.2497 (6)0.0272 (12)
C80.3644 (6)0.7438 (5)0.0850 (6)0.0208 (11)
C90.4067 (7)0.7576 (6)0.1828 (6)0.0261 (12)
C100.5010 (7)0.8375 (6)0.3213 (6)0.0291 (13)
H10A0.57010.92320.33210.035*
C110.4925 (8)0.7902 (6)0.4435 (6)0.0316 (13)
H11A0.55030.84630.53940.038*
C120.3987 (7)0.6598 (6)0.4245 (6)0.0287 (13)
H12A0.39130.62510.50710.034*
C130.3156 (7)0.5806 (6)0.2823 (6)0.0229 (12)
C140.2159 (8)0.4360 (6)0.2553 (7)0.0322 (13)
H14A0.28460.35150.23270.048*
H14B0.19650.42490.34410.048*
H14C0.10180.43750.17150.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0577 (11)0.0250 (8)0.0548 (11)0.0248 (7)0.0183 (9)0.0001 (7)
S10.0473 (10)0.0223 (7)0.0274 (8)0.0173 (6)0.0164 (7)0.0004 (6)
O10.053 (3)0.030 (2)0.029 (2)0.0182 (19)0.017 (2)0.0027 (17)
N10.043 (3)0.023 (2)0.022 (2)0.019 (2)0.009 (2)0.0055 (19)
N20.038 (3)0.020 (2)0.027 (2)0.0162 (19)0.013 (2)0.0017 (18)
N30.024 (2)0.022 (2)0.034 (3)0.0071 (18)0.015 (2)0.0014 (19)
C10.059 (4)0.022 (3)0.019 (3)0.015 (3)0.012 (3)0.004 (2)
C20.045 (4)0.027 (3)0.034 (3)0.022 (3)0.003 (3)0.003 (3)
C30.040 (3)0.022 (3)0.029 (3)0.019 (2)0.009 (3)0.005 (2)
C40.064 (4)0.021 (3)0.024 (3)0.014 (3)0.017 (3)0.001 (2)
C50.033 (3)0.020 (3)0.026 (3)0.013 (2)0.015 (2)0.007 (2)
C60.030 (3)0.017 (3)0.030 (3)0.008 (2)0.013 (3)0.004 (2)
C70.035 (3)0.020 (3)0.027 (3)0.009 (2)0.015 (3)0.002 (2)
C80.020 (3)0.017 (2)0.029 (3)0.000 (2)0.016 (2)0.004 (2)
C90.043 (3)0.017 (3)0.020 (3)0.009 (2)0.016 (3)0.004 (2)
C100.036 (3)0.020 (3)0.032 (3)0.013 (2)0.015 (3)0.003 (2)
C110.047 (4)0.020 (3)0.024 (3)0.013 (2)0.011 (3)0.001 (2)
C120.036 (3)0.025 (3)0.024 (3)0.014 (2)0.010 (2)0.004 (2)
C130.027 (3)0.021 (3)0.026 (3)0.004 (2)0.016 (2)0.001 (2)
C140.042 (3)0.024 (3)0.038 (3)0.011 (2)0.022 (3)0.006 (2)
Geometric parameters (Å, º) top
Cl1—C31.737 (5)C4—C51.396 (7)
S1—C81.655 (5)C4—H4A0.9500
O1—C71.203 (6)C5—C61.376 (7)
N1—C81.376 (6)C5—H5A0.9500
N1—C71.395 (7)C6—C71.504 (7)
N1—H1B0.8800C9—C101.382 (7)
N2—C81.364 (6)C10—C111.379 (7)
N2—C91.405 (6)C10—H10A0.9500
N2—H2B0.8800C11—C121.386 (7)
N3—C91.341 (6)C11—H11A0.9500
N3—C131.347 (7)C12—C131.392 (7)
C1—C21.391 (7)C12—H12A0.9500
C1—C61.405 (7)C13—C141.506 (7)
C1—H1A0.9500C14—H14A0.9800
C2—C31.375 (8)C14—H14B0.9800
C2—H2A0.9500C14—H14C0.9800
C3—C41.390 (8)
C8—N1—C7128.0 (4)O1—C7—C6122.3 (5)
C8—N1—H1B116.0N1—C7—C6113.2 (4)
C7—N1—H1B116.0N2—C8—N1113.5 (4)
C8—N2—C9132.1 (4)N2—C8—S1119.5 (4)
C8—N2—H2B113.9N1—C8—S1127.1 (4)
C9—N2—H2B113.9N3—C9—C10123.1 (5)
C9—N3—C13118.0 (5)N3—C9—N2118.5 (5)
C2—C1—C6119.5 (5)C10—C9—N2118.3 (5)
C2—C1—H1A120.2C11—C10—C9118.6 (5)
C6—C1—H1A120.2C11—C10—H10A120.7
C3—C2—C1119.7 (5)C9—C10—H10A120.7
C3—C2—H2A120.2C10—C11—C12119.2 (5)
C1—C2—H2A120.2C10—C11—H11A120.4
C2—C3—C4121.4 (5)C12—C11—H11A120.4
C2—C3—Cl1119.9 (4)C11—C12—C13118.8 (5)
C4—C3—Cl1118.7 (4)C11—C12—H12A120.6
C3—C4—C5118.8 (5)C13—C12—H12A120.6
C3—C4—H4A120.6N3—C13—C12122.1 (5)
C5—C4—H4A120.6N3—C13—C14116.7 (5)
C6—C5—C4120.5 (5)C12—C13—C14121.2 (5)
C6—C5—H5A119.8C13—C14—H14A109.5
C4—C5—H5A119.8C13—C14—H14B109.5
C5—C6—C1120.1 (5)H14A—C14—H14B109.5
C5—C6—C7123.7 (5)C13—C14—H14C109.5
C1—C6—C7116.2 (5)H14A—C14—H14C109.5
O1—C7—N1124.4 (5)H14B—C14—H14C109.5
C6—C1—C2—C33.0 (10)C9—N2—C8—N17.2 (8)
C1—C2—C3—C41.9 (10)C9—N2—C8—S1172.4 (5)
C1—C2—C3—Cl1178.3 (5)C7—N1—C8—N2179.3 (5)
C2—C3—C4—C50.9 (10)C7—N1—C8—S10.3 (8)
Cl1—C3—C4—C5179.3 (4)C13—N3—C9—C101.1 (8)
C3—C4—C5—C61.2 (9)C13—N3—C9—N2179.7 (4)
C4—C5—C6—C12.3 (9)C8—N2—C9—N314.9 (9)
C4—C5—C6—C7179.8 (5)C8—N2—C9—C10163.8 (5)
C2—C1—C6—C53.3 (9)N3—C9—C10—C114.4 (9)
C2—C1—C6—C7178.7 (5)N2—C9—C10—C11177.0 (5)
C8—N1—C7—O11.7 (9)C9—C10—C11—C123.7 (8)
C8—N1—C7—C6177.9 (5)C10—C11—C12—C130.1 (9)
C5—C6—C7—O1157.3 (6)C9—N3—C13—C122.8 (8)
C1—C6—C7—O120.7 (8)C9—N3—C13—C14178.7 (5)
C5—C6—C7—N122.3 (8)C11—C12—C13—N33.3 (8)
C1—C6—C7—N1159.7 (5)C11—C12—C13—C14178.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.952.423.303 (7)154
N2—H2B···S1ii0.882.613.464 (5)165
N1—H1B···N30.881.902.651 (7)142
Symmetry codes: (i) x, y, z1; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC14H12ClN3OS
Mr305.78
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.255 (3), 9.030 (3), 9.957 (3)
α, β, γ (°)80.810 (7), 66.552 (7), 87.269 (7)
V3)672.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.20 × 0.14 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.918, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
3651, 2609, 1492
Rint0.100
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.266, 0.98
No. of reflections2609
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.50

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.952.423.303 (7)154
N2—H2B···S1ii0.882.613.464 (5)165
N1—H1B···N30.881.902.651 (7)142
Symmetry codes: (i) x, y, z1; (ii) x+1, y+2, z.
 

Acknowledgements

This work was supported by Mersin University Research Fund (Project Nos. BAP-ECZ-F-TBB-(HA) 2004–3 and BAP-FEF-KB-(NK) 2006–3).

References

First citationArslan, H., Flörke, U. & Külcü, N. (2003a). J. Chem. Crystallogr. 33, 919–924.  Web of Science CSD CrossRef CAS Google Scholar
First citationArslan, H., Flörke, U. & Külcü, N. (2007). Spectrochim. Acta A, 67, 936–943.  CSD CrossRef Google Scholar
First citationArslan, H., Flörke, U., Külcü, N. & Emen, M. F. (2006a). J. Coord. Chem. 59, 223–228.  Web of Science CSD CrossRef CAS Google Scholar
First citationArslan, H., Külcü, N. & Flörke, U. (2003b). Transition Met. Chem. 28, 816–819.  Web of Science CSD CrossRef CAS Google Scholar
First citationArslan, H., Külcü, N. & Flörke, U. (2006b). Spectrochim. Acta A, 64, 1065–1071.  CrossRef Google Scholar
First citationBinzet, G., Arslan, H., Flörke, U., Külcü, N. & Duran, N. (2006). J. Coord. Chem. 59, 1395–1406.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, W.-K., Yan, H.-B., Chai, L.-Q., Lv, Z.-W. & Zhao, C.-Y. (2008). Acta Cryst. E64, o1097.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuque, J., Estevez-Hernandez, O., Reguera, E., Corrêa, R. S. & Gutierrez Maria, P. (2008). Acta Cryst. E64, o1068.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKemp, G., Roodt, A., Purcell, W. & Koch, K. R. (1997). J. Chem. Soc. Dalton Trans. 23, 4481–4483.  Web of Science CSD CrossRef Google Scholar
First citationKoch, K. R., Sacht, C., Grimmbacher, T. & Bourne, S. (1995). S. Afr. J. Chem. 48, 71–77.  CAS Google Scholar
First citationMansuroğlu, D. S., Arslan, H., Flörke, U. & Külcü, N. (2008). J. Coord. Chem. 61, 3134–3146.  Google Scholar
First citationNencki, M. (1873). Ber. Dtsch. Chem. Ges. 6, 598–600.  CrossRef Google Scholar
First citationÖzpozan, N., Arslan, H., Ozpozan, T., Ozdes, N. & Külcü, N. (2000). Thermochim. Acta, 343, 127–133.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTutughamiarso, M. & Bolte, M. (2007). Acta Cryst. E63, o4682.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUğur, D., Arslan, H. & Külcü, N. (2006). Russ. J. Coord. Chem. 32, 669–675.  Google Scholar
First citationXian, L. (2008). Acta Cryst. E64, o1969.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYue, H., Wang, Y., Xia, A., Luo, S. & Xu, D. (2008). Acta Cryst. E64, o858.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYusof, M. S. M., Ayob, N. A. C., Kadir, M. A. & Yamin, B. M. (2008a). Acta Cryst. E64, o937.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYusof, M. S. M., Muharam, S. H., Kassim, M. B. & Yamin, B. M. (2008b). Acta Cryst. E64, o1137.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o81-o82
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds